Ograniczanie wyników
Czasopisma
Autorzy
Lata
Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Strona / 1
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  semiprime ring
Sortuj według:

Ogranicz wyniki do:
Strona / 1
1
On Jordan triple α-* centralizers of semiprime rings
EN
Let R be a 2-torsion free semiprime ring equipped with an involution *. An additive mapping T : R → R is called a left (resp. right) Jordan α-* centralizer associated with a function α : R → R if T(x2) = T(x)α(x*) (resp. T(x2) = α(x*)T(x)) holds for all x (…) R. If T is both left and right Jordan α-* centralizer of R, then it is called Jordan α-* centralizer of R. In the present paper it is shown that if α is an automorphism of R, and T : R → R is an additive mapping such that 2T(xyx) = T(x)α(y*x*) + α(x*y*)T(x) holds for all x; y (…) R, then T is a Jordan α-* centralizer of R.
2
On derivations of operator algebras with involution
EN
The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L(X) be an algebra of all bounded linear operators on X and let A(X) (…) L(X) be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D : A(X) → L(X) satisfying the relation 2D(AA*A) = D(AA*)A + AA*D(A) + D(A)A*A + AD(A*A) for all A (…) A(X). In this case, D is of the form D(A) = [A,B] for all A (…) A(X) and some fixed B (…) L(X), which means that D is a derivation.
3
Identities with generalized derivations in semiprime rings
EN
Let R be a semiprime ring. An additive mapping F:R  R is called a generalized derivation of R if there exists a derivation d : R  R such that F(xy) = F(x)y + xd(y) holds, for all x,y  R. The objective of the present paper is to study the following situations: (1) (...), for all x, y in some appropriate subset of R.
4
A note on generalized (m, n)-Jordan centralizers
EN
The aim of this paper is to define generalized (m, n)-Jordan centralizers and to prove that on a prime ring with nonzero center and char (R) ≠ 6mn(m+n)(m+2n) every generalized (m, n)-Jordan centralizer is a two-sided centralizer.
5
On (…)-centralizers of semiprime rings
EN
Let R be a semiprime ring with center Z(R) and (…) be a surjective ho-omorphism. In this paper, we prove that T is a (…)-centralizer if one of the following holds: (…).
6
Jordan structure on prime rings with centralizers
EN
Our object in this paper is to study the generalization of Borut Zalar result in [1] on Jordan centralizer of semiprime rings by prove the following result: Let R be a prime of characteristic different from 2, and U be a Jordan ideal of R. If T is an additive mapping from R to itself satisfying the following condition T(ur + ru) = uT(r) + T(r)u, then T(ur) = uT(r), for all r is an element of R, u is an element of U.
7
Identities with two automorphisms on semiprime rings
EN
In this paper we investigate identities with two automorphisms on semiprime rings. We prove the following result: Let T, S : R approaches R be automorphisms where R is a 2-torsion free semiprime ring satisfying the relation T(x)x = xS(x) for all x is an element of R. In this case the mapping x approaches T(x) - x maps R into its center and T = S.
8
Identities with products of (alpha, beta)-derivations on prime rings
EN
The main purpose of this paper is to prove the following result. Let R be a noncommutative prime ring of characteristic different from two and let D and G = 0 be (\alpha, beta)-derivations of R into itself such that G commutes with alpha and beta. If [D{x), G(x)] = 0 holds for all x is an eleemnt of R then D = lambdaG where lambda is an element from the extended centroid of R.
9
On alfa-derivations of prime and semiprime rings
EN
In this paper we investigate identities with alfa-derivations on prime and semiprime rings. We prove, for example, the following result. If D : R - R is an alfa-derivation of a 2 and 3-torsion free semiprime ring R such that [D(x},x2] = 0 holds, for all x is an element of R, then D maps R into its center. The results of this paper are motivated by the work of Thaheem and Samman [20].
10
Free actions of semiprime rings with involution induced a derivation
EN
Let R be an associative ring. An element a is an element of R is said to be dependent of a mapping F : R -> R in case F (x) a = ax holds for all x is an element of R. A mapping F : R -> R is called a free action in case zero is the only dependent element of F. In this paper free actions of semiprime *- rings induced by a derivation are considered. We prove, for example, that in case we have a derivation D : R -> R, where R is a semiprime *-ring, then the mapping F defined by F(x) = D(x*) + D(x)*,x is an element of R, is a free action. It is also proved that any Jordan *-derivation on a 2-torsion free semiprime *-ring is a free action.
11
A note centralizers in semiprime rings
EN
The purpose of this paper is to prove the following result: Let R be a (m+n + 2)! and 3m2n + 3mn2 + 4m2 + 4n2 +10mn-torsion free semiprime ring with an identity element and let T : R -R be an additive mapping such that 3T(xm+n+1) = T(x)xm+n + xmT(x)xn + xm=nT(x) is fulfilled for all x is an element R and some fixed nonnegative integers m and n, m+n=0. In this case T is a centralizer.
12
On (α, β)-derivations of semiprime rings, II
13
Centralizing mappings and derivations on semiprime rings
EN
In this paper we study some properties of centralizing mappings on semi-prime rings. The main purpose is to prove the result: Let -R be a semiprime ring and f an endomorphism of R, g an epimorphism of R such that the mapping x -> [f(x),g(x)] is central. Then [f(x),g(x)] = 0 holds for all x e R. We also establish some results about (alpha,beta)-derivations.
14
A note on (alpha)-derivations on semiprime rings
EN
In this note we investigate some properties of a-derivations on prime and semiprime rings. We establish some identities for a commuting a-derivation d on a semiprime ring R and show that d maps R into its center and obtain some well-known results as a consequence. We also generalize Posner's theorem on the composition of derivations for a-derivations and as an application resolve a functional equation of automorphisms on certain prime rings.
Strona / 1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.