Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  multimodelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
In recent years, modelling has been one of the fastest growing fields of science. Ocean, ice and atmospheric models have become a powerful tool that has supported many scientific fields during the last few decades. Our work presents the new operational service – called eBalticGrid – implemented into the PLGrid Infrastructure (Dziekoński et al. 2014). The grid is based on three modelling tools – an ocean model (Parallel Ocean Program), an ice model (Community Ice Code) and an atmospheric model (Whether Research and Forecasting Model). The service provides access to 72-hour forecasts for the Baltic Sea area. It includes the physical state of the Baltic Sea, its ice cover and the main atmospheric fields, which are the key drivers of the Baltic’s physical state. Unlike other services, this provides the additional three-dimensional fields of temperature, salinity and currents in the Baltic Sea. The models work in operational mode and currently one simulation per day is run. The service has been implemented mostly for researchers. Access to the results does not require any modelling knowledge. Therefore, the main interface between a user and the model results was designed as a portal providing easy access to the model’s output. It will also be a very suitable tool for teaching students about the hydrology of the Baltic Sea. Data from the system are delivered to another operational system – SatBaltic (Woźniak et al. 2011). The development of an output format to be suitable for navigational software (GRIB files) and sharing via FTP is also planned.
Aleja Mickiewicza 24/28, 30-059 Kraków, Poland Abstract: The objective of this paper is to present the concept of a novel system, known as HydroProg, that aims to issue flood warnings in real time on the basis of numerous hydrological predictions computed using various models. The core infrastructure of the system is hosted by the University of Wrocław, Poland. A newly-established computational centre provides in real time, courtesy of the project Partners, various modelling groups, referred to as “project Participants”, with hydrometeorological data. The project Participants, having downloaded the most recent observations, are requested to run their hydrologic models on their machines and to provide the HydroProg system with the most up-to-date prediction of riverflow. The system gathers individual forecasts derived by the Participants and processes them in order to compute the ensemble prediction based on multiple models, following the approach known as multimodelling. The system is implemented in R and, in order to attain the above-mentioned functionality, is equipped with numerous scripts that manipulate PostgreSQL- and MySQL-managed databases and control the data quality as well as the data processing flow. As a result, the Participants are provided with multivariate hydrometeorological time series with sparse outliers and without missing values, and they may use these data to run their models. The first strategic project Partner is the County Office in Kłodzko, Poland, owner of the Local System for Flood Monitoring in Kłodzko County. The experimental implementation of the HydroProg system in the Nysa Kłodzka river basin has been completed, and six hydrologic models are run by scientists or research groups from the University of Wrocław, Poland, who act as Participants. Herein, we shows a single prediction exercise which serves as an example of the HydroProg performance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.