Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Full waveform inversion (FWI) sufers from the cycle skipping problem, because the observed data usually lack low-frequency components or due to errors in the wavelet estimation. In addition, the strong low-frequency non-zero-mean noise can have a large impact on FWI results. Thus, we propose a local waveform traveltime correction scheme to solve the situations when the observed data lack low-frequency components or when the estimation for the wavelet is incorrect. We use a sliding time window, which is used to decrease the traveltime diferences between the calculated and observed data to increase the cross-correlation between them. Besides, we propose a zero-mean normalized cross-correlation misft function to reduce the interference of the low-frequency non-zero-mean noise. Therefore, we propose new approaches to improve FWI results whether the observed data lack low-frequency components or the observed data are contaminated by the non-zero-mean lowfrequency noise. Numerical examples on Marmousi model show the feasibility of a FWI based on the zero-mean normalized cross-correlation misft function and a FWI based on the local traveltime correction method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.