Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 68

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  shape optimization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
PL
Przedstawiono metodę poszukiwania optymalnego kształtu stalowego słupa energetycznego o konstrukcji powłokowej. Optymalizacja została ograniczona do trzech parametrów: średnicy, zbieżności trzonu, grubości ścianki powłoki. Podstawą analiz jest minimalizacja objętości stali, z użyciem dostosowanej do problemu metody gradientu prostego. Algorytm zastosowano w autorskim programie komputerowym.
EN
The method of searching the optimal shape of a steel high-voltage thin-shell pole was presented. The optimization was limited to three parameters: the diameter, convergence of the shaft, the wall thickness of the shell. The basis of the analysis is the minimization of the steel volume of the pole shaft using the simple gradient descent method adapted to the problem. The algorithm has been implemented in a proprietary computer application.
2
Content available remote Designing of Steel CHS Columns Showing Maximum Compression Resistance
EN
The paper deals with a shape optimisation procedure of steel, compressed bars. Circular hollow sections (CHS) of variable cross sections and variable wall thickness are taken into account. The proposed procedure for designing of steel rods exhibiting maximum compression resistance is effective and possible to use in engineering practice. The advantage of the proposed shape of the bar is that it allows to increase the value of its load carrying capacity, i.e. it ensures the transfer of a higher value of compressive force than similar, solid struts of the same mass and length. The extent of the increase in the load capacity relative to the load capacity of the reference solid, cylindrical bar depends on the slenderness of the reference bar and ranges from 60% to 170%. Due to this very beneficial fact, it can be used wherever it is required to maintain a certain stiffness and an increased value of compressive force is desired, as well as in constructions where it is necessary to reduce weight while maintaining the adopted mechanical parameters, e.g. values of load bearing capacity. Final results achieved in the research were presented in the form of the flow chart allowing to design the compressed columns of optimum shape.
EN
The shape of the optimal rod determined in the work meets the condition of mass conservation in relation to the reference rod. At the same time, this rod shows a significant increase in resistance to axial force. In the examples presented, this increase was 80% and 117%, respectively, for rods with slenderness of 125 and 175. A practical benefit from the use of compression rods of the proposed shapes is clearly visible. The example presented in this publication shows how great the utility in the structural mechanics can be, resulting from the applications of complex analysis (complex numbers). This approach to many problems can find its solutions, while they are lacking in the real numbers domains. What is more, although these are operations on complex numbers, these solutions have often their real representations, as the numerical example shows. There are too few applications of complex numbers in the technique and science, therefore it is obvious that the use of complex analysis should have an increasing range. One of the first people to use complex numbers was Girolamo Cardano. Cardano, using complex numbers, was solving cubic equations, unsolvable to his times – as the famous Franciscan and professor of mathematics Luca Pacioli put it in his paper Summa de arithmetica, geometria, proportioni et proportionalita (1494). It is worth mentioning that history has given Cardano priority in the use of complex numbers, but most probably they were discovered by another professor of mathematics – Scipione del Ferro (cf. [1]). We can see, that already then, they were definitely important (complex numbers).
4
Content available remote Shape sensitivity of optimal control for the Stokes problem
EN
In this article, we study the shape sensitivity of optimal control for the steady Stokes problem. The main goal is to obtain a robust representation for the derivatives of optimal solution with respect to smooth deformation of the flow domain. We introduce in this paper a rigorous proof of existence of the material derivative in the sense of Piola, as well as the shape derivative for the solution of the optimality system. We apply these results to derive the formulae for the shape gradient of the cost functional; under some regularity conditions the shape gradient is given according to the structure theorem by a function supported on the moving boundary, then the numerical methods for shape optimization can be applied in order to solve the associated optimization problems.
5
Content available remote Size and shape design optimization of truss structures using the Jaya algorithm
EN
The metaheuristic algorithm is proposed to solve the weight minimization problem of trussstructures, considering the shape and sizing design variables. Design variables are discreteand/or continuous. The design of truss structures is optimized by an efficient optimiza-tion algorithm called Jaya. The main feature of Jaya is that it does not require settingalgorithm-specific parameters. The algorithm has a very simple formulation in which thebasic idea is to approach the best solution and escape from the worst solution [6]. Analysesof structures are performed by a finite element code in MATLAB. The effectiveness of theJaya algorithm is demonstrated using two benchmark examples: planar truss 18-bar andspatial truss 39-bar, and compared with results in references.
EN
A genetic algorithm is proposed to solve the weight minimization problem of spatial truss structures considering size and shape design variables. A very recently developed metaheuristic method called JAYA algorithm (JA) is implemented in this study for optimization of truss structures. The main feature of JA is that it does not require setting algorithm specific parameters. The algorithm has a very simple formulation where the basic idea is to approach the best solution and escape from the worst solution. Analyses of structures are performed by a finite element code in MATLAB. The effectiveness of JA algorithm is demonstrated through benchmark spatial truss 39-bar, and compare with results in references.
EN
In this paper, the issue of shape optimization of a column subjected to the generalized load with a force directed towards the positive pole (L. Tomski’s load, specific load) was considered. Based on the Hamilton’s principle, the differential equations of movement and boundary conditions describing the system were formulated. Taking into account a kinetic criterion of stability loss and a condition of constant total volume, the scope of changes in natural frequency as a function of an external load was determined with selected geometrical and physical parameters of the loading structure. On the basis of obtained results, values of geometrical parameters of individual column segments were determined, at which the maximum critical load value was obtained. In order to find the maximum critical force, which is a function of many variables, the simulated annealing algorithm was used.
EN
In this paper, we consider the problem of locating coated inclusions in a 2D dimensional conductor material in order to obtain a suitable thermal environment. The mathematical model is described by elliptic partial differential equation with linear boundary condition, including heat transfer coefficient. A shape optimization problem is formulated by introducing a cost functional to solve the problem under consideration. The shape sensitivity analysis is rigorously performed for the problem by means of a Lagrangian formulation. The optimization problem is solved by means of gradient-based strategy and numerical experiments are carried out to demonstrate the feasibility of the approach.
EN
The motivation of the article is fatigue and fretting issue of the compressor rotor blades and disks. These phenomena can be caused by high contact pressures leading to fretting occurring on contact faces in the lock (blade-disk connection, attachment of the blade to the disk). Additionally, geometrical notches and high cyclic loading can initiate cracks and lead to engine failures. The paper presents finite element static and modal analyses of the axial compressor 3rd for the original trapezoidal/dovetail lock geometry and its two modifications (new lock concepts) to optimize the stress state of the disk-blade assembly. The cyclic symmetry formulation was used to reduce modelling and computational effort.
EN
The Topological Derivative has been recognized as a powerful tool in obtaining the optimal topology for several kinds of engineering problems. This derivative provides the sensitivity of the cost functional for a boundary value problem for nucleation of a small hole or a small inclusion at a given point of the domain of integration. In this paper, we present a topological asymptotic analysis with respect to the size of singular domain perturbation for a coupled nonlinear PDEs system with an obstacle on the boundary. The domain decomposition method, referring to the SteklovPoincar´epseudo-differential operator, is employed for the asymptotic study of boundary value problem with respect to the size of singular domain perturbation. The method is based on the observation that the known expansion of the energy functional in the ring coincides with the expansion of the Steklov-Poincar´e operator on the boundary of the truncated domain with respekt to the small parameter, which measures the size of perturbation. In this way, the singular perturbation of the domain is reduced to the regular perturbation of the Steklov-Poincar´e map ping for the ring. The topological derivative for a tracking type shape functional is evaluated so as to obtain the useful formula for application in the numerical methods of shape and topology optimization.
EN
The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA). The form of a cost function derives from the energetic optimality condition, formulated in the authors’ previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.
EN
We consider the existence of optimal shapes in a context of the thermo-mechanical system of partial differential equations (PDE) using the recent approach based on elliptic regularity theory (Gottschalk and Schmitz, 2015; Agmon, Douglis and Nirenberg, 1959,1964; Gilbarg and Trudinger, 1977). We give an extended and improved definition of the set of admissible shapes based on a class of sufficiently differentiable deformation maps applied to a baseline shape. The obtained set of admissible shapes again allows to prove a uniform Schauder estimate for the elasticity PDE. In order to deal with thermal stress, a related uniform Schauder estimate will be derived for the heat equation. Special emphasis is put on Robin boundary conditions, which are motivated by the convective heat transfer processes. It is shown that these thermal Schauder estimates can serve as an input to the Schauder estimates for the elasticity equation (Gottschalk and Schmitz, 2015). This is needed to prove the compactness of the (suitably extended) solutions of the entire PDE system in some state space that carries a C2-Hölder topology for the temperature field and a C3-Hölder topology for the displacement. From this, one obtains the property of graph compactness, which is the essential tool to prove the existence of optimal shapes. Due to the topologies employed, the method works for objective functionals that depend on the displacement and its derivatives up to third order, as well as on the temperature field and its derivatives up to second order. This general result in shape optimization is then applied to the problem of optimal reliability, i.e. the problem of finding shapes that have minimal failure probability under cyclic thermomechanical loading.
13
Content available Shape optimization of the modular press body
EN
A paper contains an optimization algorithm of cross-sectional dimensions of a modular press body for the minimum mass criterion. Parameters of the wall thickness and the angle of their inclination relative to the base of section are assumed as the decision variables. The overall dimensions are treated as a constant. The optimal values of parameters were calculated using numerical method of the tool Solver in the program Microsoft Excel. The results of the optimization procedure helped reduce body weight by 27% while maintaining the required rigidity of the body.
PL
W pracy autorzy podjęli się optymalizacji odkuwki kołnierzowej w celu minimalizacji masy materiału wsadowego. Przemysłowy proces kucia realizowany jest na prasie korbowej o dopuszczalnym nacisku 2500 ton w 3 operacjach: spęczania, kucia matrycowego wstępnego i kucia matrycowego wykańczającego. Do przeprowadzonej optymalizacji wykorzystano bezgradientowy algorytm Rosenbrocka, który sprzężono z modelem numerycznym przy wykorzystaniu języka Python. W ramach badań przeprowadzono modelowanie numeryczne procesu kucia, które pozwoliło na określenie jego najistotniejszych parametrów, m.in.: sił, rozkładów odkształcenia i pola temperatur oraz sposobu płynięcia. Główne parametry optymizacji dobrano na podstawie wyników symulacji komputerowych oraz normy kucia odkuwki kołnierzy. Przyjęto, że minimalizacja masy odkuwki będzie realizowana poprzez zmianę trzech wybranych na podstawie wyników MES, najistotniejszych parametrów – grubości i położenia denka oraz wysokości otwarcia na wypływkę. Wynikiem przeprowadzonej optymalizacji było obniżenie masy materiału o 5,3%. Otrzymane rezultaty optymalizacji zostały poddane analizie a następnie weryfikacji opartej o eksperyment w warunkach przemysłowych.
EN
In presented article authors has decided to optimize forging of the flange type in order to minimize the weight of the initial billet. Industrial forging process was carried out on the crank press with the pressure of 2500 tonnes in three operations: upsetting, initial die forging and final die forging. To conduct the optimization Rosenbrock algorithm has been used. For the study numerical modeling of industrial forging process has been carried out. Based on the results of computer simulation and standards of flange forging authors decided to reduce the weight by interfering into three selected parameters - thickness and the position of the bottom and the height of the outside flash opening. The result of the optimization was material weight reduction by 5,3% The obtained results were analyzed and will be verified by experiment in industrial conditions.
15
Content available remote Wielokryterialna optymalizacja kształtu w Ansys Fluent Adjoint Solver
PL
Zaprezentowano numeryczne podejście do zagadnień dynamiki płynów ze szczególnym uwzględnieniem możliwości optymalizowania kształtu. Zwrócono uwagę na obliczenia z wykorzystaniem modułu Adjoint Solver oraz nieparametryczną optymalizację kształtu na zasadzie swobodnego formowania powierzchni. Opisano nową funkcję dostępną (jako funkcja beta) w oprogramowaniu Ansys Fluent R15, tj. wielokryterialną optymalizację Adjoint, tzw. Multi-Objective Design. Przeanalizowano wpływ kształtu końcówki skrzydła na wielkość siły oporu aerodynamicznego.
EN
Presented is numerical approach method to the fluid dynamic issues with the shape optimization options considered in particular. Attention is paid to an Adjoint Solver calculations subject and optimization of nonparametric shape by free formation of surfaces. Described is a new function (Adjoint Solver beta feature) available in Ansys Fluent R15 software which presents the Multi-Objective Design concept. Effect of a winglet shape on the aerodynamic drag force is analyzed.
16
Content available Topological derivative - theory and applications
EN
The paper is devoted to present some mathematical aspects of the topological derivative and its applications in different fields of sciences such as shape optimization and inverse problems. First the definition of the topological derivative is given and the shape optimization problem is formulated. Next the form of the topological derivative is evaluated for a mixed boundary value problem defined in a geometrical domain. Finally, an example of an application of the topological derivative in the electric impedance tomography is presented.
PL
W pracy przedstawiono matematyczne aspekty dotyczące pochodnej topologicznej oraz jej zastosowań w różnych dziedzinach nauki, takich jak optymalizacja kształtu czy problemy odwrotne. W pierwszej części podano nieformalna˛ definicje˛ pochodnej topologicznej oraz sformułowano problem optymalizacji kształtu. Następnie wyprowadzono postać pochodnej topologicznej dla mieszanego problemu brzegowego. W ostatniej części przedstawiono przykład zastosowania pochodnej topologicznej dla problemu elektrycznej tomografii impedancyjnej.
17
Content available remote Optimization of Special Inductor for Induction Pre-heating
EN
The shape of a device for induction pre-heating of steel bodies is optimized in order to obtain its best performance. The goal is to maximize heat delivered to the place of the body that will be post-heated by laser beam, while heat produced elsewhere should be minimized. The direct problem (hard-coupled analysis of magnetic and temperature fields in the system) is solved by the finite element method. The inverse problem is solved using a special genetic algorithm with some elements of NSGA II. The methodology is illustrated by a typical example.
PL
W artykule prezentowana jest optymalizacja kształtu urządzenia do indukowania grzania wstępnego stalowych obiektów w celu otrzymania najlepszego działania. Celem jest maksymalizacja ciepla dostarczanego do miejsca w obiekcie, które zostanie poddane grzaniu wiązką laserową, przy jednoczesnej minimalizacji ciepla dostarczanego wszędzie indziej. Zagadnienie proste (silnie sprzężona analiza pola magnetycznego i pola temperaturowego w systemie) rozwiązane zostało metodą elementów skończonych. Zagadnienie odwrotne rozwiązywane jest przy użyciu specjalnego algorytmu genetycznego z pewnymi elementami NSGA II. Metodyka została zilustrowana typowym przykładem.
EN
In this paper we propose a new method to detect inclusions. The proposed method is based on shape and topological optimization tools. In fact after presenting the problem, we use topological optimization tools to detect inclusions in the domain. Numerical results are presented.
EN
In this paper, we introduce four new classes of open sets in general Euclidean space RN. It is shown that every such class of open sets is compact under the Hausdorff distance. The result is applied to a shape optimization problem of p-Laplacian equation. The existence of the optimal solution is presented.
20
Content available Dynamic programming approach to shape optimization
EN
We provide a dynamic programming approach through the level set setting to structural optimization problems. By constructing a dual dynamic programming method we provide the verification theorem for optimal and "−optimal solutions of shape optimization problem.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.