Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 292

Liczba wyników na stronie
first rewind previous Strona / 15 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biostratigraphy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 15 next fast forward last
EN
A reliable stratigraphic subdivision of the Quaternary is extremely important, dependent firstly on primary significance of its deposits in geological investigations and every-day life of human societies. In the Cenozoic, the Quaternary is a period of the same stratigraphic rank as the Palaeogene and the Neogene, but it is much shorter. Traditional stratigraphic schemes of the Quaternary were based mostly on other criteria than of the older periods, because studies of the Quaternary were focused mainly on more easily accessible terrestrial deposits and a decisive role in their formation was played by climate-induced processes. These factors forced a specific approach to define the stratigraphic units and to create the stratigraphic subdivisions of the Quaternary. In the Quaternary investigations in Poland, several categories of stratigraphic classification are used, particularly lithostratigraphy (with pedostratigraphy and cryostratigraphy), morphostratigraphy, biostratigraphy (including palynostratigraphy, malacostratigraphy, teriostratigraphy and anthropostratigraphy), magnetostratigraphy, chronostratigraphy (synchronized with geochronology) and climatostratigraphy (combined with oxygen isotope stratigraphy). The main climatostratigraphic units can be treated as corresponding to the chronostratigraphic ones and it enables correlation in a regional and global scale. Acritical overview of the applied stratigraphic categories and the updated stratigraphic subdivision are presented for Poland.
EN
The surrounding of the Čoltovo village is a well-known location related to the Meliata Superunit (especially Meliata Unit s.s.). The Meliata Unit is represented by intricate mélange complexes linked to the closure of the ancient Meliata Ocean, as a significant part of the Western Carpathians geological story. In general, Meliata complexes are divided into HP/LT Permian to Jurassic metamorphosed clastic sediments, carbonates and basic volcanics (Bôrka Nappe) and complexes of “mixed chaos” of the Jurassic low grade shales with huge Triassic olistostrome bodies (Meliata Unit s.s.), the latter being the main subject of this work. Outcrops near the village of Čoltovo along the slopes of the W–E trend on the Slaná River bank provided limited information only. Therefore, new parts were excavated in March/2022. After removal of debris, the very complex internal structure of the mélange can be clearly detectable. This new section is composed of six individual outcrops (ČLP1 to ČLP6 from left to right) and consists of two contrasting lithological parts. The eastern part is mainly characterized by strongly weathered gray fine-grained shales and tuffs containing blocks of lithologically variable rocks. These are mainly represented by basic volcanics and dark coarse-grained Jurassic crinoidal limestones. The western part of the section consists of red and white fine-grained siliciclastics with basic volcanic material, and blocks of dark red, green and purple radiolarites. In the upper parts of the outcrops, layers of dark crinoidal limestones, shales and conglomerates of the Jurassic age are present. The connection between these beds and the mélange is documented by their presence as blocks in the left part of the section. The mélange complexes are overstepped by the Lower Miocene organodetritic limestones, sandstones and breccias (Bretka Beds). Three samples from the western part of the new outcrops gave identifiable Middle Triassic radiolarians. In addition, an old outcrop to the east of the newly excavated section, provided a productive sample with Upper Triassic radiolarian microfauna. Our research was also focused on geochemical analyses of radiolaria-bearing siliciclastics and basic volcanics, aiming at understanding the palaeoenvironment of the Meliata Ocean. All of the sediment samples gave similar results, which point to shallow marine environment, close to the continental margin. The geochemical data indicate a mature continental sedimentary provenance. Based on these data, we interpret the source of the samples located to the north of the Meliata Ocean (possibly Permian clastics of the Gemer Unit). Basic volcanics sample from the right side of the section confirms basalt/basaltic andesite composition. From the study of the Čoltovo section it seems the sedimentary matrix of the olistostrome probably originated from a passive continental margin and it is mixed with advanced ophiolite-bearing nappes within a Jurassic accretionary mélange (Meliata Unit s.s.).
3
Content available Early Triassic conodonts in Western Tethys
EN
Conodonts are phosphatic, tooth-like elements of extinct jawless vertebrates that are classified in the independent class Conodonta. Due to their rapid evolution, wide palaeogeographic distribution and high resistance, conodonts are one of the most significant microfossil groups in the biostratigraphy of the Paleozoic and Triassic. Animals with conodonts were bilaterally symmetrical, exclusively marine organisms, where they inhabited a variety of habitats. These include both open sea habitats, whereas some species adapted to shallow habitats of epicontinental seas. For this reason, conodonts are extremely important for understanding of the palaeoecological and palaeogeographic conditions of the Paleozoic and Triassic. They were unquestionably one of the most successful animal groups, since they existed more than 300 million years and their elements are widely used as index fossils. Conodonts have shown their value for Triassic biostratigraphy. Based on international criteria the Permian-Triassic system boundary is defined with the first appearance of the conodont species Hindeodus parvus (Kozur & Pjatakova). The Permian-Triassic interval strata of the GSSP section in Meishan (China) are next to the platform-bearing gondolellids marked by the presence of Hindeodus-Isarcicella population that enabled to introduce also a conodont zonation for shallow facies. A standard conodont zonation is, except for the two lowermost Triassic zones, based on gondolellid genera that lived in deeper water: Clarkina, Sweetospathodus, Neospathodus, Novispathodus, Borinella, Scythogondolella, Icriospathodus, Triassospathodus and Chiosella. Certain Dienerian and Smithian strata of Western Tethys are marked by shallow water and euryhaline genera and due to the absence of global biozonation markers, a stratigraphic value of some genera (Hadrodontina, Pachycladina, Eurygnathodus, Foliella, Platyvillosus) is recognized. These shallow water genera were ecologically controlled (temperature, oxygen levels) that have been adapted to the epicontinental ramp environment and were particulary instrumental in forming the western part of the Tethyan province.
EN
The Coniacian-Santonian series in the Aures Mountains of northeastern Algeria is characterized by marly-dominated sedimentation processes. This study aims to comprehensively investigate this series by combining lithostratigraphic and biostratigraphic data. The unique paleogeographic position of the Aures basin supports the co-occurrence of diverse paleontological contents in the Upper Cretaceous sediments. The methodology employed in this study includes a detailed bio-lithostratigraphic analysis to subdivide the Coniacian-Santonian series into two distinct sets. The first set comprises alternating marl-limestone units that exhibit a high fossil concentration from the Coniacian age, while the second set mainly consists of marly sediments corresponding to the Santonian age. The results obtained from this study highlight the geographical distribution of litho-biostratigraphic characteristics and reveal the presence of two formations. The lower formation is characterized by carbonated marls intercalated with limestone banks, containing fossils of Peroniceras (Tissotia tissoto) from the Coniacian age. Meanwhile, the upper formation is predominantly marly and indicates the Santonian age by displaying fossils of Palcenticeras polypsis. Furthermore, a biostratigraphic analysis focused on foraminifers allows for the subdivision of the Coniacian-Santonian series in the Aures Mountains into three distinct biozones. The first biozone corresponds to the lower Coniacian age and is identified by the presence of Dicarinella primitiva. The second biozone represents the middle to upper coniacian age and contains Dicarinella concavata fossils. Finally, the third biozone, belonging to the Santonian age, is marked by the occurrence of Dicarinella asymetrica. The boundary between the Coniacian and Santonian series in the Aures Mountains is characterized by the first appearance of Dicarinella asymetrica and Palcenticeras polypsis species. This multidisciplinary study provides valuable insights into the litho-biostratigraphic characteristics and geographical distribution of the Coniacian-Santonian series in the Aures Mountains. The findings make a significant contribution to a better understanding of sedimentary processes and the paleontological content within this region during the Upper Cretaceous period.
EN
The lithological characteristics and age analysis of the variegated Farony Shale are presented for the first time. The Farony Shale occurs in the Lubomierz and Rabka areas in the Bystrica Subunit. It is located within medium- and thin-bedded sandy dominated turbidites of the Campanian–Paleocene Ropianka Formation. It is comprised of red shales laminated or interlayered with strongly bioturbated green shales. Exposures of the Farony Shale are observed along a distance of ~25 km, in the form of a narrow belt. The age of the variegated deposits is estimated based on agglutinated foraminifera to late Campanian–earliest Maastrichtian. Their deposition was associated with low-energy conditions and a temporary limitation of the supply of sandy material to the inner part of the Magura Basin.
EN
Foraminifera, ammonites, and calcareous dinoflagellates were used for stratigraphy and, together with microfacies, for the assessment of the palaeoenvironmental conditions of the Upper Jurassic deposits in the central Alborz Zone of northern Iran. The Lar Formation (Lar Fm.) in the Polur section is of latest Oxfordian to early Kimmeridgian age. The ammonite Subnebrodites planula and the calcareous dinoflagellate Colomisphaera nagyi have been introduced as new biomarkers of the lower Kimmeridgian in the central Neo-Tethys. The distribution of calcareous dinoflagellates reflects possible dispersal routes along a narrow seaway between the western Neo-Tethys and the Alborz Zone in the central Neo-Tethys. The Terebella-Crescentiella associations of the Lar Fm. represent a low-energy setting under dysoxic conditions in the Central Neo-Tethys Ocean. The benthic foraminiferal assemblages in this formation show a high dominance of infaunal taxa and r-selected strategists. This assemblage is reminiscent of eutrophic conditions and low oxygen levels in the lower part of the Lar Fm. Good preservation of the hexactinellid sponges in the upper part of the Lar Fm. also indicates an oxygen-minimum zone. Three third-order depositional sequences can be distinguished in the study area based on six microfacies. Depositional sequence 1 (DS1) is composed mainly of argillaceous limestone and medium- to thick-bedded limestone, corresponding to an outer ramp-to-middle ramp environment. Depositional sequence 2 (DS2) comprises breccia limestone and thick-bedded limestone facies in its lower part and thin-bedded limestone to massive limestone in its upper part. The breccia limestone facies may be associated with subaerial exposure and reworking of previously deposited sediment during a relative sea level fall. The thin-bedded limestone to massive limestone of DS2 consists mainly of bioclastic mudstone to wackestone (outer ramp). These represent an deep-water outer homoclinal ramp facies. Depositional sequence 3 (DS3) consists mainly of massive limestone to thick-bedded limestone with a bioclastic peloidal microbial Crescentiella packstone (middle ramp). The relative stratigraphic positions of DSs1–3 and sequence boundaries in the uppermost Oxfordian to lower Kimmeridgian of the Polur area show a fair match to the upper Oxfordian to lower Kimmeridgian sequences (JOx7, JOx8, JKi1 and JKi2) on the global sea level curve.
EN
The geology of the Carpathian orogen in the Przemyśl area shows a diverse array of rock ages and tectonics. However, due to complicated tectonic settings and limited exposures, establishing the precise ages of selected sections and their structural arrangement is challenging. A particularly contentious aspect is the uncertain age of the exotic-bearing layers in the region, with previous age dates ranging from Neocomian to Miocene, leading to significant age discrepancies even for the same sections. Therefore, the need for well-defined age determinations is crucial. To address this issue we established precise biostratigraphic constraints on selected sections in the northern part of the Skole Nappe, specifically within the Ropianka Formation developed as marly and silty deposits with carbonate sandstones and exotic material including large olistoliths. Planktonic and calcareous benthic foraminifera from the exposures studied indicated the lower upper Maastrichtian, embracing the interval of the Racemiguembelina fructicosa and lower part of the Abathomphalus mayaroensis zones. Additionally, re-evaluation of the data of Bukowy and Geroch (1956) from the Iwanowa Hill section indicated its late Maastrichtian age, not the early Maastrichtian as previously inferred. Based on this new biostratigraphic data, the deposits of the Zielonka section are here reclassified to belong to the Leszczyny Member, and not the Paleocene Wola Korzeniecka Member as proposed by Gucik (Geroch et al., 1988). The sections studied seem to mark the lower age-limit of the redeposition of exotic material cropping out in the marginal part of the Gruszowa-Prałkowce Thrust Sheet.
EN
The ages of several Oligocene to Miocene sedimentary formations from the Eastern Carpathians Bend Zone are poorly constrained due to palaeoenvironmental factors, reworking of fossils, structural complexity and limited exposure. To help overcome these issues, this study integrates calcareous nannoplankton and foraminifera biostratigraphy with isotopic age dating (U-Pb) of volcaniclastic zircons, and sedimentological and structural observations/interpretations. Our study was carried out along an ~6-km-long section made from a series of outcrops along the Bizdidel River which exposes several formations such as the Pucioasa, Fusaru, Vinețișu, Starchiojd and Slon. We show that the Fusaru Formation consists of coarse-grained rocks deposited as confined longitudinal channel successions that migrated laterally. It is bounded by the mud-rich Pucioasa and Vinețișu formations which are lateral equivalents of the Fusaru confined channels deposited as levee/overbank units. These genetically related formations appear to reach younger ages – of the lower to middle Burdigalian based on calcareous nannoplankton and foraminifera biostratigraphy – than previously thought (upper Oligocene to lower Burdigalian). The dominant organic-rich mudstones of the Starchiojd Formation represent pelagites/hemipelagites deposited in anoxic conditions. Their middle Burdigalian age is established by a 17.41 ±0.27 Ma zircon U-Pb age of zircons from the Bătrâni Tuff in the Starchiojd Formation. Based on the similar phenocryst content, zircon U-Pb age and zircon trace element composition, the source of the tuff is suggested to be the 17.3 Ma Eger ignimbrite-forming eruption, which has proximal, near-caldera deposits in the Bükkalja Volcanic Field, Hungary. The mud-rich Slon Formation seems to be related to shelf edge/upslope failure that formed cohesive debrite avalanches resulting from foreland propagation of compression. The Slon Formation extends in this area to at least the upper part of the lower Miocene to middle Miocene. These results highlight the need to revise ages of those parts of the sequence which are poorly constrained or different in other parts of the Carpathian Basin. Such revised ages help to better constrain the understanding of the deformation history of the Carpathians.
EN
The current paper presents the results of palynological studies from deep structures at the front of the Carpathian overthrust, penetrated by the NS-1 Borehole. Both the method used and hardly accessible material from a depth of almost 5.5 km allow the presentation of new data from the Stebnik Unit, the underlying autochthonous Miocene succession, and the conglomerates that rest upon the crystalline basement. Samples collected from available cored intervals and cuttings from the lower part of the borehole provided the opportunity to study for the first time the palynological content of the strata under consideration. Samples yielded diversified material, composed of terrestrial and marine elements, commonly showing various stages of preservation. The latter indicate various origins for the material analysed, which is possibly at least partly recycled. The occurrence of this phenomenon, particularly in the Stebnik Unit and the upper part of the autochthonous Miocene sequence, confirmed also by results of earlier micropalaeontological studies, makes precise stratigraphic correlation highly debatable. The authors discuss the possibility of both Paleogene and Miocene ages for the material. Also highly debatable are the palaeoenvironmental reconstructions of this interval, although the general intense influx of terrestrial material recorded is probably responsible for the unfavourable conditions for planktonic biota. Different, optimal marine conditions can be deduced for the lower part of the autochthonous Miocene; an abundance of dinoflagellate cysts allows their precise correlation with coeval strata of the Carpathian Foredeep Basin. Palynological analysis of conglomerate matrix material gave negative results. However, this and the lithological characteristics indicate a different origin and age of these strata in comparison with other coarse-grained lithosomes, known from neighbouring areas. The generally immature state of preservation of the organic matter in the deepest part of the borehole indicates that this part of the succession was not affected by the high temperatures that would be expected at such a depth. This contrast with the much more mature palynomorphs of the overlying Stebnik Unit points to the fact that these strata were heated to a much higher degree prior to their final burial.
EN
Several closely-spaced phosphorite beds stand out at the Albian–Cenomanian transition in the mid-Cretaceous transgressive succession at the northeastern margin of the Holy Cross Mountains, central Poland. They form a distinctive condensed interval of considerable stratigraphical, palaeontological, and economic value. Here, we correlate the classical section at Annopol with a recently investigated section at Chałupki. We propose a new stratigraphic interpretation of the phosphorite interval, based on lithological correlations, Rare Earth Elements and Yttrium (REE+Y) signatures of phosphorites, age-diagnostic macrofossils, and sequence stratigraphic patterns. This interval has long been considered as exclusively Albian in age. However, new macrofossil data allow us to assign the higher phosphorite levels at Annopol and Chałupki, which were the primary target for the phosphate mining, to the lower Cenomanian. In terms of sequence stratigraphy, the phosphorite interval encompasses the depositional sequence DS Al 8 and the Lowstand System Tract of the successive DS Al/Ce 1 sequence. The proposed correlation suggests that lowstand reworking during the Albian–Cenomanian boundary interval played an important role in concentrating the phosphatic clasts and nodules to exploitable stratiform accumulations. Our conclusions are pertinent to regional studies, assessments of natural resources (in view of the recent interest in REE content of the phosphorites), and dating of the fossil assemblages preserved in the phosphorite interval. On a broader scale, they add to our understanding of the formation of stratiform phosphorite deposits.
EN
The Upper Cretaceous succession (Coniacian to lowermost Maastrichtian, with focus on the Campanian) at Petrich, Central Srednogorie Zone in Bulgaria, is described and calibrated stratigraphically based on nannofossils, dinoflagellate cysts and inoceramids. The following standard nannofossil zones and subzones are identified: UC10-UC11ab (middle to upper Coniacian), UC11c-UC12-UC13 (uppermost Coniacian to Santonian), UC14a (lowermost Campanian), UC14bTP-UC15cTP (lower Campanian to ‘middle’ Campanian), UC15dTP-UC15eTP (upper Campanian), UC16aTP (of Thibault et al. 2016; upper part of the upper Campanian), and UC16b (Campanian-Maastrichtian boundary). The base of the Campanian is defined by the FO of Broinsonia parca parca (Stradner) Bukry, 1969 and Calculites obscurus (Deflandre) Prins and Sissingh in Sissingh, 1977 (a morphotype with a wide central longitudinal suture). The Areoligera coronata dinoflagellate cyst Zone (upper lower Campanian to upper upper Campanian) is identified, corresponding to the UC14bTP-UC16aTP nannofossil subzones. The inoceramid assemblage indicates the ‘Inoceramus’ azerbaydjanensis-‘Inoceramus’ vorhelmensis Zone, correlated within the interval of nannofossil subzones UC15dTP-UC15eTP. The composition of the dinoflagellate cyst assemblages and palynofacies pattern suggest normal marine, oxic conditions and low nutrient availability within a distal shelf to open marine depositional environment during the Campanian.
EN
Among the rich dinoflagellate cyst assemblages recovered from the upper Campanian-lowermost Maastrichtian succession of the Middle Vistula River section (central Poland), four taxa (Callaiosphaeridium bicoronatum, Odontochitina dilatata, Oligosphaeridium araneum and Samlandia paucitabulata) have been described as new. An analysis of the distribution of particular dinoflagellate cyst taxa enabled the development of a highly resolved biostratigraphic framework, calibrated against other biozonal schemes (based, among others, on inoceramid bivalves, ammonites and belemnites), formerly established for the succession. A comparison of the Middle Vistula River record with the dinoflagellate cyst ranges documented in other European successions enabled correlations with selected sections in Belgium, the Netherlands, southern Germany and northern Italy, and with the Campanian/Maastrichtian boundary stratotype section in Tercis les Bains, southwest France. A palaeoecological analysis of the dino- flagellate cyst assemblages and of other components of phytoplankton communities revealed a well-defined trend in sea-level fluctuations (likely of eustatic origin), and palaeoclimatic changes probably related to the latest Cretaceous cooling episode, as observed elsewhere.
EN
Upper Turonian to lower Coniacian marls of the Strehlen Formation of the Graupa 60/1 core were investigated for their foraminiferal content to add stratigraphical and palaeoenvironmental information about the transitional facies zone of the Saxonian Cretaceous Basin. Further comparison with foraminiferal faunas of the Brausnitzbach Marl (Schrammstein Formation) were carried out to clarify its relationship to the marls of the Graupa 60/1 core. Tethyan agglutinated marker species for the late Turonian to early Coniacian confirm the proposed age of the marls of the Graupa 60/1 core and the Brausnitzbach Marl. The palaeoenvironment of the marls reflects middle to outer shelf conditions. The maximum flooding zones of genetic sequences TUR6, TUR7 and CON1 could be linked to acmes of foraminiferal species and foraminiferal morphogroups. In general, a rise of the relative sea-level can be recognised from the base to the top of the marls of the Graupa 60/1 core. While agglutinated foraminiferal assemblages suggest a generally high organic matter influx and variable but high productivity in the Graupa 60/1 core, the Brausnitzbach Marl deposition was characterized by moderate productivity and a generally shallower water depth.
PL
Głównym celem monografii jest odtworzenie historii depozycji i rozwoju facjalnego utworów górnej jury i dolnej kredy, występujących w podłożu zapadliska przedkarpackiego, w oparciu o dostępne dane z otworów wiertniczych oraz sejsmikę 3D. Rejon badań usytuowany jest w środkowej części przedgórza Karpat, pomiędzy miastami Dąbrowa Tarnowska na północnym zachodzie i Dębica na południowym wschodzie. Nowe dane, uzyskane w roku 2015, w postaci zdjęcia sejsmicznego 3D, jak również informacji z głębokiego otworu O-1 przewiercającego pełen profil utworów mezozoiku, pozwoliły na znacznie lepsze rozpoznanie i udokumentowanie wielu szczegółów budowy geologicznej tego, dotąd słabo rozpoznanego, rejonu. Sedymentacja badanych utworów węglanowych przedgórza Karpat w epokach późnojurajskiej i wczesnokredowej odbywała się w strefie szelfowej północnego, pasywnego brzegu oceanu Tetydy. Cechą charakterystyczną utworów górnej jury jest ich duże zróżnicowanie facjalne, wynikające głównie z obecności rozbudowanych kompleksów biohermowych oraz pakietów warstwowanych osadów marglisto-wapiennych. W rozdziale 2 przedstawiono budowę geologiczną rejonu badań, uwzględniając wszystkie piętra strukturalne, rozwój litologiczny utworów poszczególnych jednostek, stosowane podziały litostratygraficzne i regionalne ramy paleogeograficzne. W rozdziale 3 szczegółowo omówiona została historia badań oraz aktualny stan rozpoznania kompleksu węglanowego górnej jury i dolnej kredy przedgórza Karpat. Rozdział 4 zawiera charakterystykę litologiczną badanych utworów węglanowych z podziałem na jednostki litostratygraficzne. Charakterystyka ta opracowana została na podstawie analizy cech makroskopowych dostępnego materiału rdzeniowego oraz profilowań geofizyki otworowej. Zamieszczone profile litostratygraficzne wybranych głębokich otworów wiertniczych z obszaru badań lub jego bliskiego sąsiedztwa dokumentują obecny stan wiedzy na temat litostratygrafii i rozwoju facjalnego utworów górnej jury i dolnej kredy. W rozdziale 5 przedstawiono charakterystykę mikrofacjalną i mikropaleontologiczną badanych utworów węglanowych, jak również przeprowadzono dyskusję dotyczącą możliwości określenia zasięgu wiekowego poszczególnych wydzieleń litostratygraficznych w oparciu o wyniki wieloletnich badań oraz dane literaturowe. W rozdziale 6 zaprezentowano wyniki analizy obrazu sejsmicznego, wykonanej w oparciu o wybrane atrybuty sejsmiczne. W ramach pracy omówiono następujące atrybuty: RMS Amplitude, Envelope, Instantaneous phase, Dominant frequency, Instantaneous bandwidth, Apparent polarity, Relative acoustic impedance, First derivative, Iso-frequency component, Time gain, Chaos, Variance (Edge method), Local flatness. Przeprowadzona analiza pozwoliła na uzyskanie dodatkowych istotnych informacji odnośnie wykształcenia litologicznego i rozprzestrzenienia utworów poszczególnych ogniw litostratygraficznych, jak również dała możliwość uszczegółowienia lokalizacji dyslokacji. Na podstawie interpretacji zapisu sejsmicznego w obrębie badanego kompleksu skalnego udokumentowano również występowanie niezgodności kątowych, stref zaburzeń i deformacji związanych z tektoniką synsedymentacyjną oraz przypuszczalnych osadów spływów grawitacyjnych. W rozdziale 7 zamieszczono przekroje litofacjalne, skonstruowane wzdłuż wybranych przekrojów sejsmicznych, prezentujące przestrzenny rozkład i wzajemne relacje pomiędzy utworami poszczególnych ogniw litostratygaficzych. W rozdziale 8 przeanalizowano rozmieszczenie kompleksów biohermowych górnej jury względem morfologii podłoża jury. Analiza rozmieszczenia wykartowanych na podstawie zapisu sejsmicznego budowli organicznych, należących do serii wielkich bioherm gąbkowo-mikrobialnych, wskazuje na dwa główne obszary ich występowania, tj. rejon NW (kompleks biohermowy „N”), w którym występuje dosyć rozległy kompleks biohermowy, a jego dokładny zasięg jest trudny do ustalenia ze względu na późniejsze procesy regionalnej dolomityzacji oraz rejon centralny (kompleks biohermowy „S” w okolicach otworu O-1), w którym stwierdzono kompleks kilku wysokich budowli o dosyć stromych krawędziach. Rozdział 9 poświęcony jest zagadnieniu historii depozycyjnej późnojurajsko-wczesnokredowego basenu sedymentacyjnego przedgórza Karpat oraz omówieniu roli najważniejszych czynników wpływających na rozkład facji w obszarze badań. Wykazano, że cechą charakterystyczną znacznej części osadów jurajskich jest silnie diachroniczny charakter rozprzestrzenienia poszczególnych facji, uwarunkowany głównie paleogeomorfologią dna zbiornika sedymentacyjnego, jak również czynnikami lokalnymi, związanymi z tektoniką synsedymentacyjną. Seria gąbkowo-globuligerinowa, rozpoczynająca profil utworów górnej jury i reprezentująca najgłębszy etap sedymentacji w warunkach otwartego szelfu, cechuje się stosunkowo dużą jednorodnością wykształcenia na całym obszarze przedgórza. Kompleks biohermowy „S” rozwinął się w nadkładzie elewowanej strefy, złożonej z kilku mniejszych elementów tektonicznych, natomiast kompleks biohermowy „N” wykształcił się na rozległej, wyniesionej części strefy zrębowej, gdzie w podłożu występuje jeden główny blok tektoniczny. Intensywnie rozwijające się kompleksy biohermowe „N” i „S” wywierały coraz większy wpływ na dalszy rozwój sedymentacji osadów górnej jury w badanym rejonie, dostarczając jednocześnie materiału dla osadów redeponowanych w głębsze partie zbiornika w wyniku podmorskich spływów grawitacyjnych. W strefie przylegającej od SE do kompleksu biohermowego „S”, na profilach sejsmicznych dostrzegalny jest charakterystyczny, wysokoamplitudowy zapis obejmujący cały pakiet refleksów sejsmicznych o zmiennych kątach upadów. Częste zmiany polarności, dostrzegalne w obrębie tej strefy w odtworzeniu atrybutu Apparent polarity, podobnie jak i skrajnie zmienny zakres wartości atrybutu Relative acoustic impedance, świadczą o silnym zróżnicowaniu litologicznym tego kompleksu skalnego. W tytonie, w trakcie sedymentacji utworów serii koralowcowo-onkolitowej, nastąpiło wyraźne ujednolicenie warunków sedymentacji na całym obszarze przedgórza Karpat, związane głównie z zanikiem paleomorfologicznego zróżnicowania powierzchni dna morza. Przypuszczalnie w tym samym czasie miał miejsce kolejny etap reaktywacji dyslokacji, o czym świadczy powierzchnia niezgodności kątowej, i związane z nią efekty erozji osadów starszych. Rozprzestrzenione na całym obszarze badań utwory serii muszlowcowo-oolitowej dolnej reprezentują różnego typu płytkowodne środowiska sedymentacji (w tym środowisko równi pływowej, lagunowe i stref barierowych), jakie wykształciły się na obszarze przedgórza Karpat, na pograniczu późnej jury i wczesnej kredy. Środowisko sedymentacji utworów serii marglisto-muszlowcowej, datowanej na berias, określić można jako skrajnie płytkowodne, z facjami lagunowymi i wpływem środowisk brakicznych. Utwory najwyższych serii dolnej kredy (tj. mułowcowo-wapiennej i muszlowcowo-oolitowej górnej) reprezentują facje płytkomorskie związane z transgresją morską, która miała miejsce w walanżynie. Przedstawiona historia depozycyjna późnojurajsko-wczesnokredowego basenu sedymentacyjnego przedgórza Karpat, w połączeniu z opisem cech makroskopowych rdzeni wiertniczych, analizą mikrofacjalną i mikropaleontologiczną poszczególnych jednostek litostratygraficznych oraz interpretacją obrazu sejsmicznego, pozwala na kompleksową charakterystykę analizowanych utworów oraz wskazanie procesów mających największy wpływ na obecny charakter i stan zachowania badanych serii skalnych.
EN
The main subject of this monograph is a reconstruction of the history of deposition and facial development of Upper Jurassic and Lower Cretaceous deposits in the basement of the Carpathian Foredeep, based on data available from boreholes and a 3D seismic survey. The research area is located in the central part of the Carpathian Foreland, between two cities: Dąbrowa Tarnowska in the north-west and Dębica in the south-east. The new 3D seismic survey made in 2015 and the O-1 deep borehole – drilled in the same year and portraying a full profile of the Mesozoic sediments – allowed for much better recognition and documentation of many details of the geological structure of this previously poorly mapped area. The sedimentation of the carbonate formations of the Carpathian Foreland during the Late Jurassic and the Early Cretaceous took place in the shelf zone of the northern, passive margin of the Tethys Ocean. A characteristic feature of the Upper Jurassic sediments is their high facies diversity, due mainly to the presence of biohermal complexes and sets of layered marly-limestone sediments. Chapter 2 presents the geological structure of all structural stages in the area under study, including the lithological development, the lithostratigraphic divisions applied, and the regional palaeogeographic frameworks. Chapter 3 discusses both the history of research and the current state of knowledge regarding the Upper Jurassic and Lower Cretaceous carbonate sediments of the Carpathian Foreland. Chapter 4 describes the lithological characteristics of the carbonate sediments, considering lithostratigraphic units. This characterisation is based on a macroscopic examination of the available core material and analysis of the well logs. The lithostratigraphic profiles of selected deeper boreholes from the research area and its close vicinity document the current state of knowledge on lithostratigraphy and the facies development of the Upper Jurassic and Lower Cretaceous deposits. Chapter 5 features the microfacies and micropalaeontological characteristics of the carbonate sediments under study. Based on the results of many years of research and literature data, the possibilities of determining the age of every lithostratigraphic unit are discussed. Chapter 6 presents the analysis of the seismic 3D image based on selected seismic attributes. As part of the work, the following attributes are discussed: RMS Amplitude, Envelope, Instantaneous phase, Dominant frequency, Instantaneous bandwidth, Apparent polarity, Relative acoustic impedance, First derivative, Iso-frequency component, Time gain, Chaos, Variance (Edge method), and Local flatness. The analysis revealed additional important information regarding both the lithological development and the spatial range of sediments of individual lithostratigraphic units, at the same time facilitating the detailed location of fault zones. Based on the interpretation of the seismic image within the studied rock complex, the occurrence of angular unconformity, disturbance, and deformation zones related to synsedimentary tectonic as well as probable gravity-flow deposits are also documented. Chapter 7 presents lithofacial cross-sections constructed along selected seismic sections reflecting the spatial distribution and relationships between the sediments of individual lithostratigraphic units. Chapter 8 analyses the distribution of Upper Jurassic biohermal complexes in relation to the morphology of the Jurassic base surface. An analysis of the distribution of organic buildups belonging to the Huge Sponge-Microbial Bioherms Series, interpreted indirectly from seismic image, indicates two main areas where they can be found. These are the north-west part of the study area – where a quite extensive biohermal complex occurs (‘Complex N’), the exact range of which is difficult to determine due to later regional dolomitisation processes – and the area located in the central part of the seismic survey, where a complex of several very tall buildups with steep edges was found (‘Complex S’). Chapter 9 is devoted to the issue of the depositional history of the Late Jurassic–Early Cretaceous sedimentary basin of the Carpathian Foreland and to a discussion of the role of the most important factors influencing facies distribution in the research area. It has been shown that a characteristic feature of a large part of the Jurassic sediments is the strongly diachronic nature of the distribution of facies controlled by the varying bottom relief of the sedimentation basin and by some local factors related to synsedimentary tectonic episodes. The Sponge-Globuligerinid Series, beginning the profile of the Upper Jurassic sediments and representing the deepest sedimentation stage in the open shelf conditions, is characterised by a relatively high homogeneity of lithology in the whole Carpathian Foreland area. The ‘S’ biohermal complex developed over the elevated zone composed of several smaller tectonic elements, whilst the ‘N’ biohermal complex developed on a large, elevated part of the horst zone. The intensively developing ‘N’ and ‘S’ biohermal complexes affected successive deposition of the Late Jurassic sedimentary basin in the study area more and more. Those biohermal complexes were the source of the material redeposited into deeper parts of the sedimentary basin. On seismic profiles in the south-east neighbourhood of the ‘S’ biohermal complex, there is a characteristic high-amplitude record including the entire reflection set of variable dip angles. The frequent polarity changes which are visible within this zone in the Apparent polarity attribute, as well as the extremely variable range of values the Relative acoustic impedance attribute, prove the strong lithological differentiation of this rock complex. During the Tithonian time (sedimentation of the Coral-Oncolite Series), there was clear unification of the sedimentation conditions in the entire Carpathian Foreland area, mainly due to disappearance of the bottom relief diversity. At the same time another stage of dislocation reactivation occurred, as evidenced by the angular unconformity and the erosion traces of older sediments associated with this unconformity. The deposits of the Lower Shellbed-Oolite Series scattered throughout the research area represent various types of shallow-water sedimentation environments (including tidal, lagoon, and barrier zones) that developed in the Carpathian Foreland area on the borderline between the Late Jurassic and the Early Cretaceous. The sedimentation environment of the Marly-Shellbed Series dated to the Berriasian can be described as extremely shallow-water, with lagoon facies and under the influence of brackish environments. The sediments of the last two series of the Lower Cretaceous (i.e. the Mudstone-Limestone and Upper Shellbed-Oolite Series) represent the shallow-marine facies associated with marine transgression that took place during the Valanginian. The processes that have had the greatest impact on the current character and preservation of the rock series under study can be pinpointed and a comprehensive characterisation of these formations can be undertaken thanks to the depositional history of the Late Jurassic – Early Cretaceous sedimentary basin of the Carpathian Foreland presented herein, the macroscopic examination of the available core material, the microfacial and micropalaeontological analysis of individual lithostratigraphic units, and the interpretation of the seismic image.
EN
The foraminiferal contents of the lower–middle Miocene succession exposed in three sections in north Nur Abad on the northwestern side of the High Zagros Thrust Belt were studied. Assemblages of larger foraminifera from these sections can be referred to Zone SBZ 25 (and the Miogypsina globulus and Miogypsina intermedia subzones), which correlates with the Burdigalian Stage. For the first time, planktonic foraminifera documented from the Nur Abad area document Langhian deposits in the High Zagros, the upper 20 metres of the upper Sayl Cheshmeh section being characterised by the occurrence of planktonic foraminifera such as Globigerina concinna (Reuss), Globigerina diplostoma (Reuss), Globigerinoides obliquus (Bolli), Orbulina bilobata (d’Orbigny) and O.universa (d’Orbigny). This association characterises the Orbulina suturalis Interval Zone.
EN
The Nasiłów section represents the uppermost part of the Middle Vistula River section, a classical Polish extra-Carpathian Cretaceous section, and gives access to the Cretaceous-Paleogene (K-Pg) boundary interval. Despite many papers that have been published so far, our newly collected data shed new light on the completeness of biostratigraphic and sedimentary records of the K-Pg at that site. The Nasiłów section encompasses the upper Maastrichtian regional XII and XIII foraminiferal assemblage zones and the lower Danian P0?-Pα standard planktonic foraminiferal zones. The K-Pg boundary is placed at the top of a phosphatic layer. The grey marly chalk unit, never before subjected to examination of biostratigraphically important taxa, displays blooms of guembelitrids pointing to the uppermost Maastrichtian (XIII foraminiferal assemblage Zone) as well as of planktonic and benthic foraminifers of a reduced test size. Such foraminiferal dwarfism is commonly observed near the end of the Cretaceous and interpreted as a response to the Deccan volcanism (possible 2nd phase) that caused climate changes and ocean acidification. The terminal Maastrichtian age of the marly chalk unit is additionally supported by an acme of the dinoflagellate cyst Palinodinium grallator, together with Tallasiphora pelagica and Disphaerogena carposphaeropsis. The “Greensand”, a distinct glauconite-quartz sand unit, contains exclusively terminal Maastrichtian planktonic foraminifers and dinoflagellate cyst assemblages. Individual specimens of Danian age are interpreted to be either an effect of contamination or were translocated down by burrowers into the Greensand. The lowermost portion of the Siwak (informal lithostratigraphic unit) demonstrates an early Danian age based on the co-occurrence of the common planktonic foraminifers Globoconusa daubjergensis, Guembelitria cretacea, Muricohedbergella monmouthensis, M. planispira, Planoheterohelix globulosa, Parvularuglobigerina extensa and P. alabamensis. The last occurrence of Palynodinium grallator and the first occurrences of Carptella cornuta and Senoniasphaera inornata, recorded directly above the phosphatic layer, support the same age assignment. The new palaeomagnetic data cannot prove remagnetization at the boundary interval, in contrast to previous research which gave support to a hiatus in the critical interval.
EN
Rock samples from four boreholes and three exposures located in the southern peripheries of the Holy Cross Mountains in Poland, from strata representing the lower Cambrian Czarna Shale Formation have been studied palynologically. A relatively numerous and well-preserved lowermost Cambrian microfloral assemblage corresponds to coeval associations known from different palaeocontinents. Our new data enables reinterpretation of the biostratigraphy of the Czarna Formation, a thick rock unit basically devoid of macrofossils. The rocks analysed represent the Terreneuvian and comparison with other lower Cambrian successions indicates the middle and upper part of this oldest Cambrian series. The discovery of Variosphaeridium gen. nov. supplements information about the diversity of lowermost Cambrian microfloral assemblages. The Fimbriaglomerella membranacea-Globosphaeridium cerinum Assemblage Zone is introduced; it has a transitional character between the Asteridium tornatum-Comasphaeridium velvetum and Skiagia ornata-Fimbriaglomerella membranacea assemblage zones distinguished by Moczydłowska (1991) and identified on most Cambrian palaeocontinents.
EN
In the Ukrainian part of the Silesian Nappe (Outer Carpathians, Uzh River Basin) the exotic clast-bearing Uzhok Olistostrome (up to 60 m thick) occurs within the Oligocene Krosno Formation and underlies the Pikui Sandstone (Otryt Sandstone in Poland). The Uzhok Olistostrome consists of debris/grain/mud flow deposits with clasts of schist and bioclastic limestone. These deposits contain redeposited pelagic sediments with planktonic foraminifers including Parogloborotalia pseudocontinuosa (Jenkins), Ciperoella ciperoensis (Bolli), Globoturborotalita woodi (Jenkins), Chiloguembelina adriatica Premec Fucek, Hernitz Kucenjak and Huber. The age of the Uzhok Olistostrome based on planktonic foraminifers correlates with the middle Oligocene within the middle O2–O5 zones. The source area for the Uzhok Olistostrome and Pikui Sandstone was a mid-Oligocene intrabasinal palaeouplift (the Pikui Ridge) interpreted as the fore-bulge located in the Silesian Sub-basin ahead the emerging Outer Carpathian accretionary prism (including the Dukla Nappe and other West Carpathian inner flysch nappes).
EN
The Campanian-Paleocene Jaworzynka Formation, a part of the Magura Nappe succession in the Polish Outer Carpathians, is described in terms of its detailed litho- and biostratigraphy. The formation stretches along the marginal part of the Siary Unit, from the Jaworzynka stratotype area in the Silesian Beskid Mts up to the Mszana Dolna area in the Beskid Wyspowy Mts. Its equivalent in the Moravskoslezské Beskydy Mts of the Czech Republic is the Soláň Formation. In the stratotype area, the formation displays complex structure. We distinguish four lithological units, i.e., Biotite Sandstone and Shale (I), Shale (II), Mutne Sandstone Member (III) and Thin-bedded Turbidite (IV) and provide the first detailed biostratigraphy of particular units. The first unit forms the most prominent part of the formation. It was deposited in the Middle Campanian-earliest Maastrichtian within the upper part of Caudammina gigantea Zone up to the lower part of the Rzehakina inclusa Zone. The second unit occurs only locally and its age is limited to the Maastrichtian, to the Rzehakina inclusa Zone. The third unit is composed of thick-bedded sandstones that in some parts may form more than the half of the total thickness of the formation. It is Late Maastrichtian-Danian in age and is placed in the upper part of the Rzehakina inclusa Zone and the lower part of the Rzehakina fissistomata Zone. It is usually covered by a thin package of thin-bedded turbiditic sandstone and shales of Danian-Thanetian age with foraminifera of the Rzehakina fissistomata Zone.
EN
In part 1 of this work we discussed the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on prevailing practical methods for correlation in that J/K interval, traditional usage and the consensus over the best boundary markers that had developed in the last forty years. This consensus has developed further, based on the results of multidisciplinary studies on numerous sites over the last decade. Here in Part 2 we give an account of the application of those results by the Berriasian Working Group (ISCS), and present the stratigraphic evidence that justifies the selection of the locality of Tré Maroua (Hautes-Alpes, SE France) as the proposed GSSP. We describe a 45 m-thick section in the Calcaires Blancs vocontiens – that part of the formation covering the calpionellid Chitinoidella, Remanei. Intermedia, Colomi, Alpina, Ferasini, Elliptica and Simplex biozones. The stratigraphic data collected here has been compiled as part of a wider comparative study of complementary Vocontian Basin sites (with localities at Charens, St Bertrand, Belvedere and Le Chouet). Evidence from Tré Maroua thus sits in this substantial regional biostratigraphic and magnetostratigraphic context. For the purposes of the GSSP definition, here we particularly concentrate on the unbroken sequence and biotic markers in the interval immediately below the boundary, the Colomi Subzone (covering circa 675,000 years), and immediately above, the Alpina Subzone (covering circa 725,000 years). Particularly significant fossil datums identified in the Tré Maroua profile are the primary basal Berriasian marker, the base of the Alpina Subzone (a widespread event marked by dominance of small Calpionella alpina, with rare Crassicollaria parvula and Tintinopsella carpathica): the base of the Berriasian Stage is placed at the base of bed 14, which coincides with the base of the Alpina Subzone. Secondary markers bracketing the base of the Calpionella Zone are the FOs of the calcareous nannofossil species Nannoconus wintereri, close below the boundary, and the FO of Nannoconus steinmannii minor, close above. The Tithonian/Berriasian boundary level occurs within M19n.2n, in common with many documented sites, and is just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We present data which is congruent with magnetostratigraphic and biostratigraphic data from other key localities in France and in wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia…), and thus the characteristics and datums identified at Tré Maroua are key for correlation and, in general, they typify the J/K boundary interval in Tethys and connected seas
first rewind previous Strona / 15 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.