W artykule poruszono problematykę wyboru technologii wznoszenia budynku mieszkalnego, jednorodzinnego z punktu widzenia inwestorów. Przedstawiono w nim wyniki badania ankietowego, umożliwiające poznanie obecnych tendencji panujących wśród tych uczestników inwestycyjnego procesu budowlanego.
EN
The article discusses the issue of choosing the technology for constructing a residential, single-family building from the point of view of investors. It presents the results of the survey, enabling us to learn about the current trends among these participants in the construction investment process.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule autor wskazuje, gdzie są kluczowe punkty, istotne przy ocenie parametrów cieplnych betonu komórkowego oraz wyjaśnia tok postępowania, który należy uwzględnić przy obliczaniu współczynnika U dla ścian z tego materiału.
EN
In the article, the author indicates the key points that are important when assessing the thermal parameters of aerated concrete and explains the course of action that should be taken into account when calculating the U-value for walls made of this material.
W wyniku wieloletnich badań i doświadczeń produkcyjnych zrealizowano w Polsce i na świecie szereg kierunków utylizacji surowców (odpadów) z energetyki. Technologie utylizacji były opracowane w zasadzie dla odpadów powstających przy tradycyjnym spalaniu węgla w kotłach pyłowych. Do wytwarzania ABK stosowane są głównie popioły lotne krzemionkowe i/lub popioły fluidalne. Dotychczas popioły lotne wapienne, czyli popioły z dużą zawartością związków wapna powstające podczas spalania węgli brunatnych, a także w procesach suchego odsiarczania spalin w paleniskach konwencjonalnych nie były stosowane do wytwarzania ABK. Popiół lotny pochodzący ze spalania węgla brunatnego w klasycznym palenisku pyłowym charakteryzuje się złożonym składem mineralnym. Dominuje piasek kwarcowy, ale również anhydryt, tlenek magnezu i zwiększone ilości węglanu i tlenku wapnia w stosunku do tradycyjnych popiołów krzemionkowych. Skład ten może być powodem powstawania niekontrolowanych zmian objętości zachodzących podczas hydratacji. Zastosowanie popiołu lotnego wapiennego w technologii ABK daje korzyści ekonomiczne, ekologiczne i techniczne. Związane to jest ze zmniejszeniem ilości wapna w recepturze wyjściowej ABK (w porównaniu do receptury na tradycyjnym popiele krzemionkowym) i wynikającą z tego redukcją emisji CO2. W artykule przedstawiono wyniki badań prób technologicznych zastosowania popiołów wapiennych z Elektrowni Bełchatów. Zweryfikowano możliwość zastosowania ich jako surowiec do wytwarzania autoklawizowanego betonu komórkowego.
EN
As a result of many years of research and production experience, a number of directions for the utilisation of raw materials (waste) from the power industry have been realised in Poland and worldwide. Utilisation technologies were basically developed for wastes arising from traditional coal combustion in pulverised coal boilers. Silica fly ash and/or fluidised bed fly ash are mainly used to produce AAC. Lime fly ash with a high content of lime compounds generated during the combustion of lignite coals and in dry flue gas desulphurisation processes in conventional furnaces, has not been used to produce AAC. Fly ash from the combustion of lignite in a classic pulverised coal furnace is characterised by a complex mineral composition. Quartz sand predominates, but also anhydrite, magnesium oxide and increased amounts of carbonate and calcium oxide compared to traditional silica ash. This composition may be the reason for uncontrolled volume changes occurring during hydration. The use of lime fly ash in AAC technology offers economic, environmental and technical advantages. This is related to the reduction in the amount of lime in the AAC formulation (compared to the formulation on traditional silica ash) and the resulting reduction in CO2 emissions. The article presents the results of technological tests on the use of limestone ashes from the Bełchatów Power Plant in autoclaved aerated concrete technology. The possibility of using them as a raw material for the production of AAC was verified.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Wilgotność należy do podstawowych cech fizycznych materiału. Badania laboratoryjne mające na celu wyznaczenie procentowej zawartości wody w materiale są stosunkowo proste i nie wymagają skomplikowanej aparatury badawczej. Problemem jest natomiast wiarygodność badań wilgotności przegród. Podczas tego typu badań istnieje konieczność pobrania próbek z obiektu i ich transportu do laboratorium. Podczas obydwu tych czynności mają miejsce straty na masie wody zawartej w próbce. Zmiany w wilgotności próbek, związane z koniecznością ich transportu, można zminimalizować poprzez stosowanie szczelnych pojemniki i obniżenie temperatury. Zagadnieniem znacznie trudniejszym do realizacji jest eliminacja strat w masie wody zawartej w próbkach podczas ich pobierania. Instrukcje badań wilgotności metodą laboratoryjną zalecają pobieranie próbek metodami odkuwania lub też za pomocą tzw. wybijaków rurowych. Takie metody poboru mają wykluczyć straty na masie wody. W wielu przypadkach występuje konieczność pobrania próbki z dość znacznej głębokości lub też badania dotyczą obiektów o dużej wartości historycznej. Wyklucza to zalecane przez instrukcje metody poboru. Dlatego też najczęściej stosowaną metodą pobierania próbek, w obiektach istniejących jest wykonanie odwiertu i badanie pobranej zwierciny. Podczas procesu wiercenia dochodzi do przegrzewania się zwierciny i odparowywania wody. W literaturze naukowej i wszelkiego rodzaju opracowaniach technicznych dość często sugeruje się uwzględnienie tego zjawiska. Niestety brakuje informacji o wartości poprawek jakie należałoby przyjąć. Celem opracowania jest wykazanie różnicy w wilgotnościach masowych mierzonych metodą laboratoryjną tych samych próbek przy różnych technikach poboru. Dodatkowo wyznaczone zostały wartości poprawek dla określonych przedziałów wilgotnościowych.
EN
Humidity is one of the basic physical characteristics of a material. Laboratory tests to determine the percentage water content of a material are relatively simple and do not require sophisticated testing equipment. The problem, however, is the reliability of partition humidity tests. During this type of testing, it is necessary to take samples from the building and transport them to the laboratory. During both of these activities, there is a loss in the mass of water contained in the sample. Changes in the humidity of the samples, associated with the need to transport them, can be minimised by using airtight containers and lowering the temperature. A much more difficult issue to address is the elimination of losses in the mass of water contained in the samples during sampling. Laboratory moisture test manuals recommend sampling by forging methods or by so-called tube drifters. Such sampling methods are intended to exclude water mass losses. In many cases, it is necessary to take a sample from quite a considerable depth or the tests concern objects of high historical value. This precludes the sampling methods recommended by the instructions. For this reason, the most commonly used sampling method, in existing facilities, is to drill a borehole and testing the borehole. During the drilling process, overheating of the borehole occurs and evaporation of water. In scientific literature and technical studies of all kinds, it is quite often suggested to take this phenomenon into account. Unfortunately, there is no information on the value of the corrections to be made. The aim of this study is to demonstrate the difference in bulk humidity measured by the laboratory method of the same samples with different sampling techniques. In addition, correction values have been determined for specific humidity ranges.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW