Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 51

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  underground storage
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
Salt caverns are used for the storage of natural gas, LPG, oil, hydrogen, and compressed air due to rock salt advantageous mechanical and physical properties, large storage capacity, flexible operations scenario with high withdrawal and injection rates. The short- and long-term mechanical behaviour and properties of rock salt are influenced by mineral content and composition, structural and textural features (fabrics). Mineral composition and fabrics of rock salt result from the sedimentary environment and post sedimentary processes. The impurities in rock salt occur in form of interlayers, laminae and aggregates. The aggregates can be dispersed within the halite grains or at the boundary of halite grains. Mineral content, mineral composition of impurities and their occurrence form as well as halite grain size contribute to the high variability of rock salt mechanical properties. The rock or mineral impurities like claystone, mudstone, anhydrite, carnallite and sylvite are discussed. Moreover, the influence of micro fabrics (in micro-scale) like fluid inclusions or crystals of other minerals on rock salt mechanical performance is described. In this paper the mechanical properties and behaviour of rock salt and their relation to mineral composition and fabrics are summarised and discussed. The empirical determination of impurities and fabrics impact on deformation mechanism of rock salt, qualitative description and formulation of constative models will improve the evaluation and prediction of cavern stability by numerical modelling methods. Moreover, studying these relations may be useful in risk assessment and prediction of cavern storage capacity.
2
Content available Magazynowanie wodoru w obiektach geologicznych
PL
Gospodarka wodorowa staje się jednym z głównych kierunków Europejskiego Zielonego Ładu, który w roku 2050 powinien zapewnić neutralność klimatyczną krajów zrzeszonych w UE. Wodór będzie wytwarzany przez odnawialne źródła energii, jak również separowany i pozyskiwany, np. w koksowniach. Znajdzie zastosowanie w ekologicznym napędzie samochodów (czysty wodór) i jako domieszka do gazu ziemnego w sieciach dystrybucyjnych. Optymalizacja jego wykorzystania w gospodarce wymaga przede wszystkim stworzenia systemu jego magazynowania. Ze względu na konieczne objętości będą to obiekty geologiczne, tj. kawerny solne, wyeksploatowane złoża ropy i gazu albo zawodnione obiekty geologiczne. W Polsce podjęto problem zastosowania technik wodorowych, prowadzone są prace związane ze wszystkimi elementami koniecznej infrastruktury wodorowej. Niniejsza praca koncentruje się na problematyce dotyczącej konieczności magazynowania wodoru. W Polsce mamy do wyboru trzy rodzaje magazynów w obiektach geologicznych. Są to kawerny solne, wyeksploatowane złoża gazu oraz zawodnione struktury porowate. Jeśli chodzi o kawerny solne, współpraca Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego z przemysłem trwa już od roku 1998. Kawerny istnieją i są wykorzystywane jako magazyny metanu. Obecnie można stwierdzić, że już teraz możliwe jest magazynowanie w nich mieszanin gazowo-wodorowych przy pełnej kontroli wszelkich koniecznych parametrów (opracowano algorytmy kontrolujące i monitorujące wszystkie konieczne procesy). W odniesieniu do wyeksploatowanych złóż gazu / struktur zawodnionych przeprowadzono szeroko zakrojone prace studialne dotyczące zakresu badań i modelowań. Znaleziono partnera do ewentualnego konsorcjum – Silesian University of Technology. Konsorcjum jest już w stanie podjąć się wykonania projektu adaptacji wyeksploatowanego złoża na magazyn metanowo-wodorowy lub w zależności od potrzeb – na magazyn wodorowy. Projekt będzie dotyczył wszystkich prac związanych z badaniami skał i płynów złożowych, geomechaniki i mikrobiologii.
EN
Hydrogen economy became one of the main directions in EU’s Green Deal for making Europe climate neutral in 2050. Hydrogen will be produced with the use of renewable energy sources or it will be obtained from coking plants and chemical companies. It will be applied as ecological fuel for cars and as a mix with methane in gas distribution networks. Works connected with all aspects of hydrogen infrastructure are conducted in Poland. The key problem in creating a hydrogen system is hydrogen storage. They ought to be underground (RES) because of their potential volume. Three types of underground storages are taken into account. There are salt caverns, exploited gas reservoirs and aquifers. Salt caverns were built in Poland and now they are fully operational methane storages. Oli and Gas Institute – National Research Institute has been collaborating with the Polish Oil and Gas Company since 1998. Salt cavern storage exists and is used as methane storages. Now it is possible to use them as methane-hydrogen mixtures storages with full control of all operational parameters (appropriate algorithms are established). Extensive study works were carried out in relation to depleted gas reservoirs/aquifers: from laboratory investigations to numerical modelling. The consortium with Silesian University of Technology was created, capable of carrying out all possible projects in this field. The consortium is already able to undertake the project of adapting the depleted field to a methane-hydrogen storage or, depending on the needs, to a hydrogen storage. All types of investigations of reservoir rocks and reservoir fluids will be taken into consideration.
PL
W artykule zaprezentowano wpływ współczynnika bezpieczeństwa na poziom utrzymania zapasów gazu płynnego w magazynach podziemnych (kawernowych) zależnego od sposobu przeglądu zapasów.
EN
Storage processes play a key role in business operations. An indispensable factor in their proper operation is proper maintenance of stocks. They are a prerequisite for maintaining flow flexibility, and their size should be adapted to the level of distribution. The purpose of this article is to present the impact of the safety factor on the level of liquid gas stocks in underground storage (cavernous) dependent on the method of inventory review. The paper presents a theoretical basis for the theory of stocktaking and stocktaking and indicates the theoretical possibilities to exploit the importance of a safety factor on inventory levels.
PL
W artykule zaprezentowano wpływ współczynnika bezpieczeństwa na poziom utrzymania zapasów gazu płynnego w magazynach podziemnych (kawernowych) zależnego od sposobu przeglądu zapasów.
EN
An indispensable factor in the proper operation is proper maintenance of stocks. They are a prerequisite for maintaining flow flexibility, and their size should be adapted to the level of distribution. The aim of this article is to present the impact of the safety factor on the level of liquid stocks in underground storage (cavernous) dependent on the inventory review method. The paper presents the theoretical foundations of stocking and stock-keeping theories and outlines the theoretical possibilities to exploit the importance of safety factor on inventory levels.
EN
The analysis of formal and legal regulations revealed that Underground Gas Storages are a favorable option in Polish conditions. The author presented a possible localization of an UGS in a salt structure of the Fore-Sudetic Monocline, indicating the advantages of the area and problems to be solved. Attention was paid to the UGS stability and complexity of this issue. The presented strength indices and rheological parameters of salt were based on laboratory experiments. In the future they can be used at the stage of designing and performing geomechanical analyses.
EN
Acoustic inversion is useful to extract information from seismic data. Inhomogeneities of salt deposits should be predicted before the decision of underground storage location is made. The work concerns the possibility of detecting anhydrite intercalation in the rock salt from seismic dataset. The resolution strongly depends on signal to noise ratio. The synthetic pseudoacoustic impedance sections are generated for efficiency test of predictive and minimum entropy deconvolution process, when random noise distorts the seismic traces.
PL
Rozpoznanie niejednorodności wewnętrznej budowy złóż soli kamiennej jest warunkiem powodzenia zagospodarowania złoża jako podziemnego zbiornika. Pozyskanie tej wiedzy poprzez interpretację sekcji pseudoimpedancji akustycznej jest relatywnie tanie i nieinwazyjne dla środowiska. Wiarygodność rozpoznania zależy od jakości interpretowanych sekcji. Prezentowane w artykule syntetyczne sekcje pseudoimpedancji akustycznej stanowią ilustrację wzrostu rozdzielczości w wyniku włączenia na etapie przetwarzania danych procedury dekonwolucji minimum entropii MED.
EN
Identification of inhomogeneity of the inner structure of rock-salt deposits ic crucial for the successful management of deposit as a underground storage. Obtaining knowledge of this kind, by interpretation of the pseudo-acoustic impedance section, is relatively inexpensive and non-invasive for the environment. The identification reliability depends on the quality of the interpreted sections. The pseudo-acoustic impedance sections, briefly presented in this paper, demonstrate the increase in the resolving power by adding a procedure of minimum entropy deconvolution (MED).
EN
Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.
9
EN
In energy systems of developed EU countries, the serious problem is periodic surplus of electricity production, following by deficiencies of electricity. They are particularly important in systems, where renewable energy sources (wind/solar) are significant. These are irregular power sources, depending on season and day time. Power installed in such stations is much less used than power installed in thermal or nuclear power stations. Problem is growing with increase of renewable energy share, in conjunction with the pro-ecological EU policy and continuous support for renewable energy sources. For example, in Germany (in 2011) 20% of produced electricity comes from renewable sources, in 2020 it has to be 35%, and 80% in 2050, because of nuclear plants closing and reducing the CO2 emission. Total power of wind stations there is 29 GW and of solar is 24 GW, despite the unfavorable, as it seems, climate. Germany becomes a world leader in the solar power, and power installed there is similar to total solar plants power in the rest of the world. And plans for 2050 are: 80 GW (wind) and 65 GW (solar). Such a situation in neighboring country, with similar climate, considerably more developed, indicates that similar trends will be present also here. Currently, we are at the beginning - in 2011 total power of wind stations in Poland was 2 GW, and of solar stations – 2 MW. This means the lowest use of both energies among EU, per capita and per 1 km2. In coming years the share of renewable energy sources in Poland must radically increase. Planning in Poland for 2030 is 19% of energy from renewable sources, in comparison with 6% at present (mainly hydro and biomass). Irregularities in electricity production from wind/sun, make this energy still quite expensive. If usage of this energy periodic surpluses would be practically solved, resulting prices would be lower. Problem of electricity storage has not yet been generally solved. There are hydro pumped plants, but they cannot be applied larger, because specific terrain layout is required and the impact on environment is high. Future of surplus electricity storage lies under the ground, in caverns leached in salt deposits, where one can store energy as hydrogen obtained by water electrolysis or as compressed air. This would give much greater density of stored energy than pumped hydro, without the negative environmental impact. In Poland we have appropriate salt deposits, and proven technology of salt caverns building. We already have efficiently working storages in salt caverns: KPMG Mogilno (Cavern Underground Gas Storage - owner PGNiG) and PMRiP Góra (Underground Storage of Oil and Fuels - owner SOLINO/ORLEN). In EU, both such magazines, besides of Poland, are built only in Germany and France. CHEMKOP was the initiator, originator and designer of both Polish underground storages, and specialized computer software for cavern designing, developed in CHEMKOP Sp. z o.o. was purchased (licenses) by 30 leading companies from all over the world. Salt caverns, similar to natural gas storage caverns, after due designing, may be successfully built for hydrogen, and in this form may store the excess energy. Hydrogen will be produced by water electrolysis using excess electricity, stored in salt cavern and afterwards used in different ways: as supplement to natural gas in gas network, as fuel for fuel cells or electro generators or as a raw material in petrochemical industry. The key issue is the salt caverns – they should be located where disposing of brine is possible. Hydrogen storage should be located near potential places of its use. At present, few hydrogen storage salt caverns are existing in UK and USA, but for petrochemical use, not for energy purposes. Special hydrogen pipeline in USA, 300 miles long, connected storage caverns with hydrogen producers and users. The first storage cavern for hydrogen produced from surplus electricity will be built in Etzel (Germany). Pilot peak power stations, working on compressed air from salt caverns are working in Germany (Huntorf) and in USA (McIntosh). Currently most of the research related to hydrogen storage takes place in Germany. It is associated with energy balance of Germany, with large amount of salt deposits and with high level of technologies for underground storage. Matter is urgent, because problem of periodic local energy surpluses in German network is so serious, that Poland and Czech Republic are forced to build special devices on border network connections, to reduce the impact of these irregularities on their own networks. In next few years, as expected, Germany will develop more economical hydrogen electrolysis technology and adequate electrolyzers will be produced. The surface equipment for hydrogen pumping stations will be also available. Poland has periodic surpluses of electricity production even now and very good possibility of salt caverns construction in comparison with others. Most countries do not have appropriate salt deposits, so we can become one of the European champions in storage of hydrogen – the fuel of future. It is necessary, however, to start the research work for such a storage just now. In the authors opinion, the research works should include: • identify the needs for energy storage in Poland, estimate a surplus of energy for storage in hydrogen or compressed air caverns, determine recommendation for hydrogen production by water electrolysis on a wider scale, • define possibility of storage caverns construction for hydrogen in Polish salt deposits, • determine specificity of storage caverns construction for hydrogen: size and shape, working pressures, recommendations for drilling/completion, used materials, • examine geomechanical stability of hydrogen storage caverns in their specific pressure conditions, using special computer model, • examine thermodynamic behavior of hydrogen storage caverns in their specific temperature conditions, using computer model for hydrogen cavern, • compare and evaluate hydrogen storage and compressed air storage technologies for energy surpluses (HYES/ CAES), looking for their usefulness in Polish conditions. Further research work will help to create a sound basis for taking decision to build underground energy storage by specifying: storage policies, applied technology, location of storage caverns and scenarios of their work. Final remarks • Technical and economical problems with proper use of renewable energy sources will be increasing in Poland in nearest future year by year, similarly as currently in Germany. • The problem cannot be solved in other way than storage of energy surplus for use during deficiency periods. • The best solution, at present, is energy storage in salt caverns in the form of hydrogen. • In Poland, we have both appropriate salt deposits and large experience in designing and construction of salt cavern storages. • We are world leaders in computer modeling of development and operation of salt cavern. • Our experience can be extended to the hydrogen storage, provided that relevant research work will start and be performed. • So, there is a chance that Poland will become one of the leading country in storage of hydrogen – a clean fuel of the future.
PL
Podziemne magazyny, takie jak SubTropolis, są przyszłościowym rozwiązaniem. Pozwalają znacząco obniżyć koszty energii, zwiększyć bezpieczeństwo, zarówno przed działaniami osób niepowołanych jak i zdarzeń naturalnych, takich jak częste w Stanach Zjednoczonych tornada. Ponadto podziemne magazyny nie zajmują przestrzeni miejskiej i zapewniają szybki dostęp i przepływ ładunków. Dzięki panującym warunkom klimatycznym są idealnym miejscem do przechowywania takich towarów, jak produkty spożywcze, dokumenty, taśmy filmowe i inne, szczególnie narażone na oddziaływanie klimatu.
EN
Underground warehouses like SubTropolis are a modern solution of storing goods. They allow significantly reduce ener- gy costs, improve safety against both unauthorized activities and natural disasters like frequent tornadoes in the United States. In addition, underground storage facilities do not occu- py public space and provide easy access and fast movement of goods. Due to the climatic conditions it is ideal for the storage of goods such as food products, documents, film strips and other particularly exposed to climate impacts.
PL
Podstawą oceny stateczności obudowy podziemnych zbiorników retencyjnych są wyniki badań dołowych obudowy zbiornika i górotworu za obudową. Mając na uwadze złożoną geometrię zbiornika i sąsiadujących wyrobisk, a także ich wzajemne oddziaływanie, celowe jest zastosowanie modelowania numerycznego do oceny stateczności obudowy podziemnych zbiorników retencyjnych. W artykule przedstawiono krótki przegląd metod oceny parametrów wytrzymałościowych obudowy zbiornika i górotworu i ich struktury, a także przykład analizy numerycznej stateczności zbiornika retencyjnego.
EN
The results of underground tests of a lining of reservoir and rockmass behind the lining are the basis for the assessment of the lining's stability of underground retention reservoirs are. Given the complex geometry of the reservoir and adjacent workings, as well as their interaction, it is advisable to use numerical modelling to assess the stability of the lining of underground retention reservoirs. The article presents a brief overview of methods for assessing of the strength parameters of the lining of a reservoir and the rockmass and their structure and also the examples of numerical analysis of stability of a retention reservoir.
PL
Głównym celem artykułu jest zaprezentowanie parametrów podziemnego magazynu gazu Strachocina osiągniętych po rozbudowie pojemności czynnej magazynu. Instytut Nafty i Gazu, Zakład Podziemnego Magazynowania Gazu wykonał projekt rozbudowy magazynu, którego celem była optymalizacja kosztów inwestycji. Projekt rozbudowy magazynu zakładał powiększenie pojemności czynnej do 330 mln m3, odwiercenie ośmiu odwiertów horyzontalnych, budowę niezbędnej instalacji napowierzchniowej oraz budowę stacji sprężania gazu. Opracowany projekt zakładał pracę sprężarek zarówno podczas fazy odbioru, jak i zatłaczania. Najtrudniejszą częścią projektu było wykonanie prognozy wydajności PMG po rozbudowie magazynu, gdyż nowo projektowane odwierty horyzontalne były wiercone po raz pierwszy nie tylko na PMG Strachocina, ale również w Polsce południowo-wschodniej. W artykule przedstawiono lokalizację projektowanych otworów horyzontalnych na strukturze. Pokazano również dane uzyskane z eksploatacji PMG po zakończeniu inwestycji w 2011 r. Załączone wykresy prezentują porównanie wydajności zatłaczania gazu osiągniętej w 2011 r. z wydajnością projektowaną w 2006 r. Podobnie wykresy przedstawiają porównanie prognozy wydajności odbioru gazu z PMG (2006 r.) oraz rzeczywistej wydajności odbioru osiągniętej w sezonie zimowym 2011/2012. Dane uzyskane zarówno podczas zatłaczania, jak i odbioru gazu w pierwszym cyklu pracy PMG Strachocina po rozbudowie magazynu potwierdziły osiągnięcie założeń projektowych. W związku z tym rozbudowa PMG Strachocina zakończyła się powodzeniem. Na uwagę zasługuje fakt, że sukces został osiągnięty w trudnych warunkach złożowych. Kluczem do niego była ścisła współpraca wszystkich zespołów zaangażowanych w prowadzenie inwestycji.
EN
The main objective of this paper is to present the parameters of the Strachocina underground gas storage achieved after increasing of the storage capacity. The Oil and Gas Institute, Underground Gas Storage Department carried out a storage expansion project aimed at the optimization of the investment costs. The project evisaged increasing working volume to 330 million m3, drilling of eight horizontal wells, building necessary surface installation and the construction of a gas compression station. The designers assumed that the compressors will work both during the withdrawal and injection phase. The most difficult part of the project was to make reliable UGS rate predictions achieved after storage expansion, because the newly designed horizontal wells were drilled for the first time not only in the UGS Strachocina, but also in south-eastern Poland. The article shows the location of the designed horizontal wells. Data obtained during storage operation were presented after the investment was finished in 2011. The charts presented in the paper show a comparison of the gas injection storage rates achieved during 2011 with designed rates in 2006. The similar figures present the designed (in 2006) withdrawal rates and actual obtained during the winter season of 2011/2012. Data collected during both injection and withdrawal season in the first UGS Strachocina cycle, after storage enlargement confirmed the achievement of the project objectives. Therefore, the development of the Strachocina storage facility was successful. It is worth noting that success was achieved in difficult reservoir conditions. The key to success was the close cooperation of all the teams involved in the investment.
13
Content available Systemowe magazyny gazu w Polsce
PL
Niniejszy artykuł porusza kwestie związane z podziemnym magazynowaniem gazu, w ujęciu ich systemowego wykorzystania. Przedstawia aktualną sytuację pojemności magazynowych w Polsce oraz prezentuje punkt widzenia autorów na dalszy rozwój systemowych pojemności magazynowych, w aspekcie pojawiających się zmian na rynku gazu związanych z rozwojem energetyki gazowej, liberalizacją rynku gazu i rozwojem wydobycia gazu z łupków.
EN
This paper discusses issues related to underground gas storage in terms of its system use. Paper presents the current state of storage facilities in Poland and highlights of the views of authors on the further development of system storage capacity in terms of changes occurring in the gas associated with the development of gas energy, gas market liberalization, the development of shale gas production.
14
Content available Detection of salts deposits geometry variation
EN
The construction of underground reservoirs is important for energy security and ecology. Salt deposits reveal favourable conditions for the construction of reservoirs. The inhomogeneities within salt deposit as well as changes of lithology, thickness and geometry variation should be especially predicted before the underground reservoir location. The work concerns the possibility of the recognition of the space distribution of anhydrites in the rock salt. Acoustic impedance is one of the basic factors characterising physical features of rocks. Seismic survey is the most economical source of subsurface information. A method of inversion of seismic section to pseudo-acoustic impedance section gives the possibility of the recognition of discontinuities within salt deposits. The paper includes a number of pseudo-acoustic impedance sections constructed for geometrical variations of anhydrites in rock salt. For the modelling of pseudo impedance sections a computer system INVERSE was used.
PL
Cechsztyńskie złoża soli kamiennej rozpatrywane są jako jedno z ważnych, potencjalnych miejsc składowania odpadów radioaktywnych oraz dwutlenku węgla CO2. Korzystne warunki do budowy takich kawern stwarzają złoża pokładowe soli kamiennej o znacznej miąższości (pow. 100 m grubości). Modelowania syntetycznych sekcji pseudoimpedancji akustycznej generowanych z uwzględnieniem różnej konfiguracji przestrzennej anhydrytów zaburzających jednorodność budowy pokładów soli kamiennych, perspektywicznych dla budowy podziemnych zbiorników. Testy wykonano na danych syntetycznych sekcji pseudoimpedancji akustycznej generowanych dla teoretycznego sejsmogeologicznego modelu ośrodka przybliżającego budowę pokładu soli kamiennej. Do konstrukcji modeli sejsmogeologicznych zawierających pokładowe złoża soli wykorzystano parametry sprężyste typowe dla cechsztynu oraz uzyskane na podstawie prędkości propagacji fal sejsmicznych, ustalonych w oparciu o wyniki profilowań geofizycznych w otworach kontrolno-pomiarowych w rejonie projektowanego szybu SW-4. Do modelowania syntetycznych sekcji pseudo-impedancji akustycznej wykorzystano autorski program INWERS.
15
EN
Underground space is used in a number of ways, e.g. for transport infrastructure, public utility objects, for waste disposal and storing of various substances and fuels. Underground space is used for activities or facilities which cannot be realized on surface because they would be too difficult to perform or environmentally hazardous or expensive. Offices, stores, warehouses, cultural and recreation objects as well as city or intercity subways are located very shallow under the surface. At greater depth storages, tunnels and car parkings could be located. At ca. 250-3000 m of depth underground space is employed for storing natural gas, energy, fuels, carbon dioxide and radioactive waste. Underground disposal sites and storages are made in abandoned workings and pore space. The shallow part of underground space has been utilized only to a small degree in Poland. Deeper zones are used for non-tank natural gas storages in rock mass, in that in abandoned workings, underground oil, fuel and waste storages, in rock mass and in abandoned workings. At present four underground waste disposal sites are operational in Poland; there are eight underground gas storages: five in closed mine and one in a salt dome. Storing in pore space has best perspectives in Poland.
PL
Problematyka artykułu ściśle związana jest z budową podziemnych magazynów. Dotyczy wstępnego rozpoznania i kwalifikacji złoża. Podziemne składowanie rozważane jest dla celów magazynowania strategicznych rezerw węglowodorów, sekwestracji dwutlenku węgla C02 oraz składowania odpadów o wysokim stopniu radioaktywności. Złoża soli kamiennej spełniają odpowiednie warunki do budowy takich magazynów. W Polsce są to cechsztyńskie złoża soli w rejonie Wyniesienia Łeby i monokliny przedsudeckiej. Warunkiem powodzenia takiego zagospodarowania złoża jest prawidłowe rozpoznanie wszystkich niejednorodności w budowie pokładu soli. Powierzchniowe pomiary sejsmiczne są ekonomicznym źródłem pozyskiwania takich informacji Wykonanie inwersji sekcji sejsmicznych w celu otrzymania sekcji pseudoimpedancji akustycznej prowadzi do uzyskania przybliżonego rozkładu impedancji akustycznej. To pozwala na wydobycie informacji bezpośrednio powiązanych z budową geologiczną. W artykule przedstawiono syntetyczne sekcje pseudoimpedancji akustycznej, generowane dla modelu, wzorowanym na złożu soli kamiennej Mechelinka z rejonu Wyniesienia Łeby. Załączone sekcje ilustrująjak cechy ważne dla lokalizacji podziemnego zbiornika, takie jak niejednorodności lito-facjalne w wykształceniu złoża i jego przestrzennym ułożeniu typowe dla złoża Mechelinka rejonu Wyniesienia Łeby odzwierciedlają się sekcjach pseudoimpedancji akustycznej.
EN
The subject is strongly related to underground storage. The work deals with initial recognition and qualification of salts deposit. Underground reservoirs are very interesting as the objects for storage of hydrocarbons and wastes: carbon dioxide C02 sequestration and highly radioactive waste HLW. In salt deposits there are favorable conditions for construction of such reservoirs. Zechstein rocks salts of Łeba elevation and of the Fore-Sudetic Monocline have been recognized in Poland. A basic requirement is careful investigations of inhomogeneities within the salt deposit. All changes of thickness and lithology should be especially examined and predicted before the underground location is fixed. A seismic survey is the most economical source of detailed subsurface information. Inversion of seismic section extracts additional information from seismic data. Process effectively transforms seismic information into the geological domain. Pseudoimpedance acoustic section gives the possibility to bind very closely the acoustic impedance with subsurface structure The paper presents the synthetic seismic section and pseudoimpedance section constructed for the simplified data from salts deposit Mechelinka of Łeba elevation The synthetics pseudoimpedance acoustics sections presented in this paper show how significant changes of thickness and lithology typical for Zechstein salts deposits can be revealed in seismic synthetic sections.
PL
Złoża soli kamiennej o wewnętrznej jednorodnej strukturze są atrakcyjną lokalizacją dla budowy podziemnych magazynów węglowodorów. Metody powierzchniowych pomiarów sejsmicznych są ekonomicznym źródłem niezbędnych informacji geologicznych. Inwersja sekcji sejsmicznych pozwala na uzyskanie przybliżonego rozkładu impedancji akustycznej środowiska skalnego, co odwzorowuje jego budowę. Interpretacja sekcji pseudoimpedancji akustycznej przy niskich parametrach sygnału sejsmicznego i niekorzystnym stosunku sygnału użytecznego do szumu S/N (signal to noise) jest polepszana przez stosowanie metod dekonwolucji. Ze względu na wysokie wartości współczynników odbicia w utworach cechsztynu, dobrych efektów można spodziewać się w wyniku wykonania dekonwolucji minimum entropii MED. Wsparciem dla wizualnej interpretacji formacji geologicznej są metody cyfrowej obróbki obrazów. Z otrzymanych rozkładów pseudoimpedancji akustycznej, jako bazy danych, buduje się obrazy i wizualizuje przekrój środowiska geologicznego. Detekcja niejednorodności litologiczno-facjalnych w budowie pokładu rozpoznawanego jako potencjalny zbiornik węglowodorów może być uzyskana w wyniku właściwej interpretacji obrazów sekcji pseudoimpedancji akustycznej.
EN
Rock salt deposits with homogenous inner structure are attractive localisation for hydrocarbon underground reservoir. Surface seismic measurement methods are economic source of essential geologic information. The inversion of seismic section permts to get approximate distribution of rocks environment acoustic impedance, projecting geologic formation. Interpretation of acoustic pseudoimpedance section with poor seismic signal parameters and low sinal to noise ratio S/N is improved by deconvolution process. The high reflection coefficient, typical for Zechstein rocks salts, suggests good results with application of minimum entropy deconvolution method MED. Computer methods of image processing are supporting visual interpretation of geologic formation. The images of geologic environment and their visualisation are constructed from database of acoustic pseudoimpedance distributions. The face lithology inhomogeneity detection, for stratum identification as potential underground hydrocarbon reservoir or waste storage, may be obtained in process of proper interpretation of acoustic impedance section images.
EN
The paper dealswith thematter of underground, geological storage of carbon dioxide in Poland. The state of research, legal and especially public acceptance of this issue is presented. Possibile conflicts of interest as well as phenomena related to the underground storage of carbon dioxide and their possibile impact to environment and local populace living conditions are discussed. Disinformation circulating in the media and local communities is exposed.
EN
Spent nuclear fuel (SNF) and high-level waste (HLW) resulting from the SNF reprocessing produce significant amount of heat during retardation of alfa, beta, y, particles and emit ionizing radiation, as well as neutrons even after cooling. Therefore, it is recommended to store SNF and HLWin deep geological formations capable to provide isolation from ground waters for a sufficiently long time. Only a few rock types could meet such requirements and a rock salt is among them. In the paper the following topics are presented: categories of radioactive wastes, worldwide review of nuclear waste disposal developments, selection of the appropriate rock formations for location of safe storage facilities as well as the concept of potential site selection for such storage facility in the territory of Poland.
EN
In the last two decades two underground storage facilities were constructed by leaching caverns in salt domes in Poland. Although the storage facilities appeared successful, many wrong ideas about geological and technical problems connected with the underground storage in salt caverns are still popular. Therefore, the paper presents a brief review of the most important aspects of this subject along with history of underground storage in salt caverns, types of storage facilities and geological and technical conditions to be met in selection of the site. Moreover, the problems of water supply and brine recycling or disposal are also discussed and issues connected with spacing, shape and size of caverns and tightness and operation pressure ranged are presented.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.