Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 135

Liczba wyników na stronie
first rewind previous Strona / 7 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fixed point
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 7 next fast forward last
EN
In this paper, we introduce and study an Ishikawa-type iteration process for the class of generalized hemicontractive mappings in p-uniformly convex metric spaces, and prove both Delta-convergence and strong convergence theorems for approximating a fixed point of generalized hemicontractive mapping in complete p-uniformly convex metric spaces. We give a surprising example of this class of mapping that is not a hemicontractive mapping. Our results complement, extend and generalize numerous other recent results in CAT(0) spaces.
EN
In this paper, we introduce the class of asymptotically demicontractive multivalued mappings and establish a strong convergence theorem of the modified Mann iteration to a common fixed point of a finite family of asymptotically demicontractive multivalued mappings in a complete CAT(0) space. We also give a numerical example of our iterative method to show its applicability.
EN
The combined systems of integral equations have become of great importance in various fields of sciences such as electromagnetic and nuclear physics. New classes of the merged type of Urysohn Volterra-Chandrasekhar quadratic integral equations are proposed in this paper. This proposed system involves fractional Urysohn Volterra kernels and also Chandrasekhar kernels. The solvability of a coupled system of integral equations of Urysohn Volterra-Chandrasekhar mixed type is studied. To realize the existence of a solution of those mixed systems, we use the Perov’s fixed point combined with the Leray-Schauder fixed point approach in generalized Banach algebra spaces.
4
Content available remote An iterative algorithm for the system of split mixed equilibrium problem
EN
In this article, a new problem that is called system of split mixed equilibrium problems is introduced. This problem is more general than many other equilibrium problems such as problems of system of equilibrium, system of split equilibrium, split mixed equilibrium, and system of split variational inequality. A new iterative algorithm is proposed, and it is shown that it satisfies the weak convergence conditions for nonexpansive mappings in real Hilbert spaces. Also, an application to system of split variational inequality problems and a numeric example are given to show the efficiency of the results. Finally, we compare its rate of convergence other algorithms and show that the proposed method converges faster.
EN
In this paper, we introduced the notion of generalized expansive mappings in dislocated cone metric spaces with Banach algebras. Furthermore, we prove some fixed point theorems for generalized expansive mappings in dislocated cone metric spaces with Banach algebras without the assumption of normality of cones. Moreover, we give an example to elucidate our result. Our results are significant extension and generalizations of many recent results in the literature.
EN
Fuzzy cognitive maps (FCMs) are recurrent neural networks applied for modelling complex systems using weighted causal relations. In FCM-based decision-making, the inference about the modelled system is provided by the behaviour of an iteration. Fuzzy grey cognitive maps (FGCMs) are extensions of fuzzy cognitive maps, applying uncertain weights between the concepts. This uncertainty is expressed by the so-called grey numbers. Similarly as in FCMs, the inference is determined by an iteration process which may converge to an equilibrium point, but limit cycles or chaotic behaviour may also turn up. In this paper, based on the grey connections between the concepts and the parameters of the sigmoid threshold function, we give sufficient conditions for the existence and uniqueness of fixed points of sigmoid FGCMs.
EN
In [11], the author discussed a new class of nearly weak uniformly L-Lipschitzian mappings and prove some strong convergence results of the modified Ishikawa iteration with errors in real Banach spaces. And the author has given the open problem as follows: Are there any difference on convergence between the Mann iteration and Ishikawa iteration? Can we prove the equivalence on convergence between these two iterations? In this paper, we given an affirmative answer to the open problem.
EN
The aim of the current work is to investigate the numerical study of an integro-differential nonlinear Volterra-Fredholm equation with a weakly singular kernels. Our approximation technique is based on the product integration method in conjunction with an iterative scheme. The existence and uniqueness of the solution have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our method.
9
Content available remote A general fixed point theorem for weakly subsequentially continuous mappings
EN
In this paper a general fixed point theorem for two pairs of subsequentially mappings compatible of type E is proved, which generalize the results by [2]-[4], [6] and other results. As applications, new results for mappings satisfying contractive conditions of integral type, φ-contractive conditions and weak contractive conditions are obtained.
EN
In this paper, we provide some generalizations of the Darbo’s fixed point theorem associated with the measure of noncompactness and present some results on the existence of the coupled fixed point theorems for a special class of operators in a Banach space. To acquire this result, we define α-ψ and β-ψ con-densing operators and using them we propose new fixed point results. Our results generalize and extendsome comparable results from the literature. Additionally, as an application, we apply the obtained fixedpoint theorems to study the nonlinear functional integral equations.
11
Content available remote An admissible hybrid contraction with an Ulam type stability
EN
In this manuscript, we introduce a new hybrid contraction that unify several nonlinear and linear contractions in the set-up of a complete metric space. We present an example to indicate the genuine of the proved result. In addition, we consider Ulam type stability and well-posedness for this new hybrid contraction.
EN
This paper is devoted to study the existence of solutions for a class of initial value problems for non-instantaneous impulsive fractional differential equations involving the Caputo fractional derivative in a Banach space. The arguments are based upon Monch's fixed point theorem and the technique of measures of noncompactness.
13
Content available remote Some extensions of banach contraction principle in G-metric spaces
EN
We present different extensions of the Banach contraction principle in the G-metric space setting. More precisely, we consider mappings for which the contractive condition is satisfied by a power of the mapping and for which the power depends on the specified point in the space. We first state the result in the continuous case and later, show that the continuity is indeed not necessary. Imitating some techniques obtained in the metric case, we prove that under certain conditions, it is enough for the contractive condition to be verified on a proper subset of the space under consideration. These results generalize well known comparable results.
EN
In this paper a new type of common limit range property is introduced, which generalizes the notion of strongly tangential property [9] and joint common limit range property [16]. A general fixed point theorem for two pairs of hybrid mappings involving altering distance and satisfying an implicit relation is proved, generalizing the results from [9], [16] and other papers. As application, we obtain new results for contractive mappings satisfying a contractive condition of integral type, for mappings satisfying ф - contractive conditions and satisfying (ψ, ф) - contractive conditions.
EN
In this paper, we present some results concerning the existence and the attractivity of solutions for some functional integral equations of Hadamard fractional order. We use an extension of the Burton-Kirk fixed point theorem in Fréchet spaces.
EN
In this paper, we introduce the notion of 2-generalized hybrid sequences, extending the notion of nonexpansive and hybrid sequences introduced and studied in our previous work [Djafari Rouhani B., Ergodic theorems for nonexpansive sequences in Hilbert spaces and related problems, Ph.D. thesis, Yale University, 1981; and other published in J. Math. Anal. Appl., 1990, 2002, and 2014; Nonlinear Anal., 1997, 2002, and 2004], and prove ergodic and convergence theorems for such sequences in a Hilbert space H. Subsequently, we apply our results to prove new fixed point theorems for 2-generalized hybrid mappings, first introduced in [Maruyama T., Takahashi W., Yao M., Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal., 2011, 12, 185-197] and further studied in [Lin L.-J., Takahashi W., Attractive point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., 2012, 16, 1763-1779], defined on arbitrary nonempty subsets of H.
EN
In this manuscript, some fixed point results for fuzzy mappings with rational type contraction in the context of a complete partially ordered complex-valued metric space are established. The derived results generalize some fixed point theorems in the existing literature. An appropriate example is given.
18
Content available remote The Knaster-Tarski theorem versus monotonne nonexpansive mappings
EN
Let X be a partially ordered set with the property that each family of order intervals of the form [a, b], [a,→) with the finite intersection property has a nonempty intersection. We show that every directed subset of X has a supremum. Then we apply the above result to prove that if X is a topological space with a partial order ⪯ for which the order intervals are compact, F is a nonempty commutative family of monotone maps from X into X and there exists c ∈ X such that c ⪯ Tc for every T ∈ F, then the set of common fixed points of F is nonempty and has a maximal element. The result, specialized to the case of Banach spaces, gives a general fixed point theorem for monotone mappings that drops many assumptions from several recent results in this area. An application to the theory of integral equations of Urysohn’s type is also given.
EN
For α ∈ (1,2] the singular fractional boundary value problem [formula] satisfying the boundary conditions [formula] where β ∈ (0,α - 1], μ ∈ (0,α - 1], and [formula] are Riemann-Liouville derivatives of order α, β, and μ respectively, is considered. Here ƒ satisfies a local Carathéodory condition, and ƒ (t, x, y) may be singular at the value 0 in its space variable x. Using regularization and sequential techniques and Krasnosel’skii’s fixed point theorem, it is shown this boundary value problem has a positive solution. An example is given.
EN
Based on concepts for semigroup theory, fractional calculus, Banach contraction principle and Krasnoselskii fixed point theorem (FPT), this manuscript is principally involved with existence results of Riemann-Liouville (RL) fractional neutral integro-differential systems (FNIDS) with nonlocal conditions (NLCs) in Banach spaces. An example is offered to demonstrate the theoretical concepts.
first rewind previous Strona / 7 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.