Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Materials based on polydimethylsiloxane have been developed with antibacterial activity and mechanical properties required for wound treatment. Sage herb (raw, modified, and polyphenol extract) was used as a filler in an amount of 5 and 10% by weight. Physicochemical, mechanical, and biological properties were examined. The results indicate a beneficial effect of sage modification on the tested properties.
PL
Na bazie polidimetylosiloksanu opracowano materiały o działaniu przeciwbakteryjnym i właściwościach mechanicznych wymaganych przy leczeniu ran. Jako napełniacz zastosowano ziele szałwii (surowe, modyfikowane i ekstrakt polifenolowy) w ilości 5 i 10% mas. Zbadano właściwości fizykochemiczne, mechaniczne i biologiczne. Wykazano korzystny wpływ modyfikacji szałwii na badane właściwości.
EN
The aim of this work was to obtain polymer fibers by the emulsion electrospinning. For this purpose, polycaprolactone (PCL) was used, which was modified before the electrospinning stage with micelles obtained by the oil-in-water (O/W) emulsion method. Micelles were obtained by combining the non-ionic surfactant Tween 80 or Triton X-100 used at different concentrations with the amino acid alanine. The obtained fibrous substrates had a typical unimodal fiber size distribution and their average size was in the range of 590-800 nm. The effectiveness of the emulsion electrospinning process was confirmed by Fourier Transform Infrared Spectroscopy - Attenuated Total Reflectance (FTIR-ATR) showing the presence of surfactants. The addition of micelles to the polymer solution significantly reduces the contact angle of nonwoven fabrics: from 120° (for PCL) to ~20-30° for surfactant-loaded nonwovens, and the micellar form allows tracking the release of alanine into the solution (UV-Vis). The combination of the core-shell- -morphology of the emulsion electrospun fibers allows comparable amino acid release times. There were no significant differences in both the amount of alanine released and the rate of its release between PCL/ Tween80/alanine and PCL/Triton X-100/alanine fibers, which were characterized by a similar fiber size.
EN
Fibrous scaffolds based on (bio)polymers are observed as mimicking the microstructure of the extracellular matrix. Thus, they are considered as an example of a utilitarian scaffold, useful for the regeneration of various types of tissues. The techniques described in the literature are well known to obtain submicrometric and nanometric fibers that, when randomly arranged, mimic the ECM. The biomimetic scaffold criterion might be even better reflected if the cell adhesion sites are present on the surface of such fibers. They promote the formation of the focal adhesion contact or facilitate the formation of a protein film on the fiber surface. Such a process is enhanced by an appropriate physical or chemical modification that activates the protein adsorption and the subsequent cell adhesion. The aim of this paper is to present different methods of physical and/or chemical modifications of fibrous materials: which can serve as scaffolds to support the regeneration processes of various tissues. In terms of physical methods, only weak interactions between the surface and the modifier were observed. This technique is simple but not durable. Chemisorption used as a second method of fiber modification is possible if a covalent or ionic bond is formed between the fiber and the modifier. Therefore, the chemical adsorption may not be fully reversible and requires a sequence of chemical actions to form a chemical bond. The most commonly used methods are the combined methods where the first step is the physical activation of the fiber surface, which facilitates the chemical modification step.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.