Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 26

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  analiza tekstury
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The automated analysis of computed tomography (CT) scans of vertebrae, for the purpose of determining an individual’s age and sex constitutes a vital area of research. Accurate assessment of bone age in children facilitates the monitoring of their growth and development. Moreover, the determination of both age and sex has significant relevance in various legal contexts involving human remains. We have built a dataset comprising CT scans of vertebral bodies from 166 patients of diverse genders, acquired during routine cardiac examinations. These images were rescaled to 8-bit data, and textural features were computed using the qMaZda software. The results were analysed employing conventional machine learning techniques and deep convolutional networks. The regression model, developed for the automatic estimation of bone age, accurately determined patients’ ages, with a mean absolute error of 3.14 years and R2 = 0.79. In the context of classifying patient gender through textural analysis supported by machine learning, we achieved an accuracy of 69 %. However, the application of deep convolutional networks for this task yielded a slightly lower accuracy of 59 %.
2
Content available remote Classifying median nerves in carpal tunnel syndrome: Ultrasound image analysis
EN
Rationale and objectives: Carpal tunnel syndrome (CTS) refers to a common median nerve pathology, which is related to an increased pressure in the fibrous/bone canal of the wrist. Ultrasound gained popularity recently as a useful tool for the accurate and repetitive diagnosis of carpal tunnel syndrome. The present study aimed to develop an objective, repetitive technique for assessing median nerves based on carpal tunnel ultrasound texture analysis. Material and methods: Sixty ultrasound images, including 30 images of swollen ‘‘symptomatic” median nerves and 30 normal ‘‘asymptomatic” median nerves, were used in this study. Narrow age group of patients were selected. They were recruited after positive nerve conduction study and with present clinical symptoms reviled on basis of interview and written questionnaire. Meticulous nerve area and echogenicity assessment were conducted in line with existing recommendations. Results: Using the feature-selection tool MaZda, an exhaustive search of the data space was conducted, and four texture features were found for which the classification was the most accurate. Images were classified using a support vector machine with a five-fold cross-verification in MATLAB. Evoked outcomes showed a 79% correct classification rate. Conclusion: Computer analysis of the image echogenicity of the median nerve presented confidence levels comparable to trusted evaluation techniques. Further, it is a promising tool for assessing the nerve’s status in CTS as approach of the CTS assessment free from subjectivity of examiner. The developed method enables nerve classification based on echogenicity that reflects the nerve composition changes not only subjective nerve area assessment.
EN
Dual-phase (DP) steel has an excellent blend of various mechanical properties; hence it is used immensely in the automotive industries. It is challenging to form high strength DP steel into desirable complex shapes because of their limited formability at room temperature conditions. One of the proven alternatives is warm/hot forming. In-detail investigation of forming limits over DP590 steel has been carried out in present work. Firstly, various constitutive models and yield criteria have been formulated for DP steel at different temperatures and strain rates. The modified Arrhenius (m-A) constitutive model and Barlat 1989 yielding function displayed the best prediction of flow stress and anisotropic yielding behavior, respectively. The experimental forming limits (FLD) were evaluated at 300, 473 and 673 K temperatures using Nakazima tests. The forming limits of the material are improved by approximately 24% on increasing the temperature from 300 to 673 K. The textural analysis of the deformed surface has been done using electron back scattered diffraction (EBSD) studies, and γ fibers are found to be responsible for improvement in the formability of the material. Additionally, Marciniak and Kuczynski (MK) model was used to predict the theoretical FLD using all the possible combinations of constitutive models and yield criteria. Finally, the m-A constitutive model, along with Barlat 1989 yielding function has shown the best prediction for forming limits at all the temperatures. The finite element study has also been performed using mentioned material models for accurate prediction of dome height, surface strain and thickness distribution across the specimens.
EN
The aim of this article was to determine the effect of principal component analysis on the results of classification of spongy tissue images. Four hundred computed tomography images of the spine (L1 vertebra) were used for the analyses. The images were from fifty healthy patients and fifty patients diagnosed with osteoporosis. The obtained tissue image samples with a size of 50x50 pixels were subjected to texture analysis. As a result, feature descriptors based on a grey level histogram, gradient matrix, RL matrix, event matrix, autoregressive model and wavelet transform were obtained. The results obtained were ranked in importance from the most important to the least important. The first fifty features from the ranking were used for further experiments. The data were subjected to the principal component analysis, which resulted in a set of six new features. Subsequently, both sets (50 and 6 traits) were classified using five different methods: naive Bayesian classifier, multilayer perceptrons, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. The best results were obtained for data on which principal components analysis was performed and classified using 1-Nearest Neighbour. Such an algorithm of procedure allowed to obtain a high value of TPR and PPV parameters, equal to 97.5%. In the case of other classifiers, the use of principal component analysis worsened the results by an average of 2%.
PL
Celem niniejszego artykułu było określenie wpływu analizy głównych składowych na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdziesięciu zdrowych pacjentów oraz pięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki obrazowe tkanki o wymiarze 50x50 pikseli poddano analizie tekstury. W wyniku tego otrzymano deskryptory cech oparte na histogramie poziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności od najistotniejszej do najmniej ważnej. Pięćdziesiąt pierwszych cech z rankingu wykorzystano do dalszych eksperymentów. Dane zostały poddane analizie głównych składowych wskutek czego uzyskano zbiór sześciu nowych cech. Następnie oba zbiory (50 i 6 cech) zostały poddane klasyfikacji przy użyciu pięciu różnych metod: naiwnego klasyfikatora Bayesa, wielowarstwowych perceptronów, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. Najlepsze wyniki uzyskano dla danych, na których przeprowadzono analizę głównych składowych i poddano klasyfikacji za pomocą 1-Nearest Neighbour. Taki algorytm postępowania pozwolił na uzyskanie wysokiej wartości parametrów TPR oraz PPV, równych 97,5%. W przypadku pozostałych klasyfikatorów zastosowanie analizy głównych składowych pogorszyło wyniki średnio o 2%.
EN
The aim of this article was to compare the influence of the data pre-processing methods – normalization and standardization – on the results of the classification of spongy tissue images. Four hundred CT images of the spine (L1 vertebra) were used for the analysis. The images were obtained from fifty healthy patients and fifty patients with diagnosed with osteoporosis. The samples of tissue (50×50 pixels) were subjected to a texture analysis to obtain descriptors of features based on a histogram of grey levels, gradient, run length matrix, co-occurrence matrix, autoregressive model and wavelet transform. The obtained results were set in the importance ranking (from the most important to the least important), and the first fifty features were used for further experiments. These data were normalized and standardized and then classified using five different methods: naive Bayes classifier, support vector machine, multilayer perceptrons, random forest and classification via regression. The best results were obtained for standardized data and classified by using multilayer perceptrons. This algorithm allowed for obtaining high accuracy of classification at the level of 94.25%.
PL
Celem niniejszego artykułu było porównanie wpływu metod wstępnego przetwarzania danych - normalizacji i standaryzacji - na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdzisięciu zdrowych pacjentów oraz pięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki tkanki (50×50 pikseli) poddano analizie tekstury w wyniku czego otrzymano deskryptory cech oparte na histogramie poziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności (od najistotniejszej do najmniej ważnej), a pięćdziesiąt pierwszych cech wykorzystano do dalszych eksperymentów. Dane zostały poddane normalizacji oraz standaryzacji, a następnie klasyfikowane przy użyciu pięciu różnych metod: naiwny klasyfikator Bayesa, maszyna wektorów wspierających, wielowarstwowe perceptrony, las losowy oraz klasyfikacji poprzez regresje. Najlepsze wyniki uzyskano dla danych na których przeprowadzono standaryzacje i poddano klasyfikacji za pomocą wielowarstwowych perceptronów. Taki algorytm postępowania pozwolił na uzyskanie wysokiej skuteczności klasyfikacji na poziomie 94,25%.
EN
In this study, texture analysis (TA) is applied for characterization of dystrophic muscles visualized on T2-weighted Magnetic Resonance (MR) images. The study proposes a strategy for indicating the textural features that are the most appropriate for testing the therapies of Duchenne muscular dystrophy (DMD). The strategy considers that muscle texture evolves not only along with the disease progression but also with the individual’s development. First, a Monte Carlo (MC) procedure is used to assess the relative importance of each feature in identifying the phases of growth in healthy controls. The features considered as age-dependent at a given acceptance threshold are excluded from further analyses. It is assumed that their application in therapies’ evaluation may entail an incorrect assessment of dystrophy response to treatment. Next, the remaining features are used in differentiation among dystrophy phases. At this step, an MC-based feature selection is applied to find an optimal subset of features. Experiments are repeated at several acceptance thresholds for age-dependent features. Different solutions are finally compared with two classifiers: Neural Network (NN) and Support Vector Machines (SVM). The study is based on the Golden Retriever Muscular Dystrophy (GRMD) model. In total, 39 features provided by 8 TA methods (statistical, filter- and model-based) are tested.
EN
In this paper, we review the use of texture features for cancer detection in Ultrasound (US) images of breast, prostate, thyroid, ovaries and liver for Computer Aided Diagnosis (CAD) systems. This paper shows that texture features are a valuable tool to extract diagnostically relevant information from US images. This information helps practitioners to discriminate normal from abnormal tissues. A drawback of some classes of texture features comes from their sensitivity to both changes in image resolution and grayscale levels. These limitations pose a considerable challenge to CAD systems, because the information content of a specific texture feature depends on the US imaging system and its setup. Our review shows that single classes of texture features are insufficient, if considered alone, to create robust CAD systems, which can help to solve practical problems, such as cancer screening. Therefore, we recommend that the CAD system design involves testing a wide range of texture features along with features obtained with other image processing methods. Having such a compet-itive testing phase helps the designer to select the best feature combination for a particular problem. This approach will lead to practical US based cancer detection systems which deliver real benefits to patients by improving the diagnosis accuracy while reducing health care cost.
EN
The article presents studies on the impact of the source image type on the efficacy of image texture analysis in the terms of distinguishing classes of land use or land cover (LULC). Single gray-scale images are usually the inputs for this type of operation, however their selection is not unambiguous, especially in the case of multispectral images. Two very high resolution satellite images were used in the study: Pleiades (GSD: 2 m) and QuickBird (2.4 m). Five different input images were tested: the original near-infrared and red bands, the images of the first two main components, and the image of the normalised difference vegetation index - NDVI. Five LULC classes were compared to each other: bare soil, low vegetation, deciduous forests, coniferous forests and built-up areas. Granulometric analysis, as the one of the high efficient methods of texture analysis, was used for the test. Research results have shown that the choice of source image for this kind of processing can be very important for the efficacy of distinguishing between different LULC classes. NDVI images, and also the near infrared band and the first principal component were found most useful.
PL
Artykuł przedstawia badania dotyczące wpływu typu obrazu źródłowego na skuteczność analizy teksturowej obrazu z punktu widzenia wyodrębniania klas użytkowania lub pokrycia terenu (LULC). Tego typu operacjom poddawane są zazwyczaj pojedyncze obrazy w skali szarości, jednak ich wybór nie jest jednoznaczny, zwłaszcza w przypadku obrazów wielospektralnych. W badaniach wykorzystano dwa obrazy satelitarne o bardzo wysokiej rozdzielczości: Pleiades (GSD: 2 m) oraz QuickBird (2,4 m). Testowano pięć różnych obrazów wejściowych: oryginalne kanały bliskiej podczerwieni oraz czerwieni, obrazy dwóch pierwszych składowych głównych oraz obraz wskaźnika NDVI. Porównano wzajemnie pięć klas użytkowania lub pokrycia terenu: odkrytą glebę, niską roślinność, lasy liściaste, lasy iglaste oraz tereny zabudowane. Jako narzędzie testów wybrano analizę granulometryczną, jedną z metod analizy teksturowej o wysokiej skuteczności. Wyniki badań pokazały, że wybór obrazu źródłowego do przetworzeń może mieć bardzo duże znaczenie przy rozróżnianiu różnych klas użytkowania lub pokrycia terenu. Największą przydatnością cechowały się obrazy NDVI oraz kanału bliskiej podczerwieni i pierwszej składowej głównej.
EN
The aim of the study is to investigate the potential of multi-sequence texture analysis in the characterization of prostatic tissues from in vivo Magnetic Resonance Images (MRI). The approach consists in simultaneous analysis of several images, each acquired under different conditions, but representing the same part of the organ. First, the texture of each image is characterized independently of the others. Then the feature values corresponding to different acquisition conditions are combined in one vector, characterizing a combination of textures derived from several sequences. Three MRI sequences are considered: T1-weighted, T2-weighted, and diffusion-weighted. Their textures are characterized using six methods (statistical and model-based). In total, 30 tissue descriptors are calculated for each sequence. The feature space is reduced using a modified Monte Carlo feature selection, combined with wrapper methods, and Principal Components Analysis. Six classifiers were used in the work. Multi-sequence texture analysis led to better classification results than single-sequence analysis. The subsets of features selected with the Monte Carlo method guaranteed the highest classification accuracies.
PL
W pracy przedstawiono nową metodę klasyfikacji treści zdjęć satelitarnych, opartą na wykorzystaniu granulometrycznej analizy tekstury obrazu. Opisano podstawy teoretyczne zaprezentowanej metody oraz zbadano jej dokładność, w zależności od wybranych parametrów przetworzeń granulometrycznych oraz cech obrazów źródłowych. Porównano ją także z innymi, dotychczas stosowanymi metodami klasyfikacji treści zdjęć satelitarnych. Istotą zaproponowanej metody jest wykorzystanie, oprócz danych spektralnych, również map granulometrycznych, czyli obrazów zawierających informację na temat tekstury obrazu w otoczeniu poszczególnych pikseli, powstających w wyniku granulometrycznych przetworzeń obrazu. Ważną zaletą granulometrii obrazowej jako metody oznaczania tekstury obrazu jest, m.in., wieloskalowość, czyli możliwość określania stopnia tekstury o rożnych rozmiarach ziarna. Drugą kluczową zaletą jest prawidłowe działanie również na krawędziach obiektów na obrazie, czyli odporność na tzw. błąd krawędzi. Przedstawiona metoda klasyfikacji polegająca na złożeniu map granulometrycznych i oryginalnych obrazów wielospektralnych pozwala uwzględniać kontekstową cechę interpretacyjną - teksturę, zwiększając możliwości klasyfikacji, a jednocześnie cechuje się dużą prostotą wykonania, podobną do klasycznej pikselowej klasyfikacji spektralnej. Efektywność granulometrii obrazowej zbadano pod kątem kilku czynników: rozdzielczości przestrzennej i rodzaju obrazu źródłowego, rodzaju morfologicznych operacji otwarcia i domknięcia oraz rozmiaru okna granulometrii określającego przestrzenny zasięg obliczenia lokalnej granulometrii względem poszczególnych pikseli. W pierwszej kolejności przeanalizowano separatywność wybranych klas pokrycia lub użytkowania terenu na podstawie wyłącznie danych spektralnych, a także na podstawie map granulometrycznych. W wybranych przypadkach, dzięki zastosowaniu analizy granulometrycznej, stwierdzono znaczny wzrost separatywności klas. Główna część pracy koncentruje się na badaniu dokładności klasyfikacji wykonanej przy użyciu zaproponowanej metody. Uzyskane wyniki dowodzą, że wykorzystanie map granulometrycznych w procesie klasyfikacji może znacząco podnieść jej dokładność. Stwierdzono przy tym istotny wpływ rozdzielczości obrazu źródłowego na efektywność badanej metody. Określono i opisano również znaczenie pozostałych, przedstawionych wyżej parametrów przetworzeń granulometrycznych, i samej klasyfikacji. Wnioski z badań pozwoliły na przedstawienie propozycji modelu dwuetapowej klasyfikacji wykorzystującej zarówno wyniki klasyfikacji spektralnej, jak i spektralno-teksturowej, co pozwoliło na uzyskanie optymalnej dokładności. Zaproponowana metoda może być stosowana w procesie półautomatycznego tworzenia map pokrycia lub użytkowania terenu na podstawie zdjęć satelitarnych lub lotniczych, pozwalając uzyskiwać większa dokładność, niż klasyfikacja w podejściu spektralnym.
EN
This book presents a new method of classification of satellite images, based on utilisation of granulometric analysis of image texture. The theoretical background of the method and its accuracy, depending on different parameters of granulometric processing and input images, is presented. It is compared to other approaches of satellite image classification. The essence qf the method relies on the use of granulometric maps, i.e. images containing information about a local texture in every pixel, additionally to spectral data contained in original multispectral images. One of the main advantages of the proposed method is its multiscality, i.e. a possibility to define a texture of an image, depending on a different size of texture element. Also, granulometric analysis of a texture is resistant to the so-called border error. As a result, it works properly on the edges of objects in an image. The method, based on a combination of granulometric maps and multispectral images. allows to take into account an important contextual feature of an image - that is, texture. Consequently, it is increasing a potential for correct classification, while remaining as simple as a pixel-based spectral classification approach. The effectiveness of image granulometry has been tested with different features and parameters: spatial resolution and a type of an input image, type of morphological opening and closing, as well as the size of a granulometric window, defining a range of a local granulometric analysis. A separability of different classes of land cover or land use, basing on spectral data and granulemetric maps, has been tested. Significant increase of separabillity has been observed in certain cases. The main goal of the book was to study accuracy of classification, basing on the presented method. The results of the research show that a use of granulometric maps in a classification process may increase the accuracy significantly. An important influence of input image's spatial resolution on the outcome has been observed. Also, the impact of other aforementioned features has been tested and described. Conclusions derived from the research allow to propose a two-step model, using results of both, spectral and spectro-textural classifications, to obtain an optimal accuracy of classification. The presented method may be used in process of semi-automatic generation of land cover and land use maps, basing on satellite or aerial images, obtaining accuracy level, which is higher than in the case of a spectral-based classification.
EN
Glacial tills and fluvioglacial sediments deposited by the ice-sheet during the Pomeranian Stage (Weichselian) in northeast Germany have been examined in terms of the degree of abrasion, rounding and frosting of quartz grain surfaces in order to determine the conditions and processes that occurred in the alimentation environment of the fine-grained material, as well as during transport. Strata in the glaciomarginal zone and the hinterland of the Pomeranian Stage in the area represent diverse lithofacies, but have similar textural features. These features illustrate mainly that a high-energy aquatic environment had reacted with glacial deposits prior to their inclusion into the ice mass and deposited in the area covered by the Odra lobe. The lack of regional diversification in the character of quartz grain surfaces in glacial deposits between the German part of the Odra lobe and the remainder of the area analysed is recorded solely in the morphological dimension, i.e. the outlet fragment of the ice-front’s course, but not in textural features of the sediments.
PL
W artykule przedstawiono analizę możliwości zastosowania cech wyznaczanych z tekstury do klasyfikacji wykrytych, na obrazie mammograficznym, obszarów zainteresowania – jako obszarów niezmienionych lub zmienionych chorobowo. Cechy tekstury wyznaczono na podstawie histogramu, macierzy gradientu, macierzy długości pasm oraz macierzy zdarzeń. Klasyfikację przeprowadzono z wykorzystaniem klasyfikatora k-NN. W wyniku przeprowadzonych eksperymentów poprawnie rozpoznano wszystkie zmienione chorobowo próbki.
EN
This paper presents an analysis of the possibility of using textural features for mammographic images classification. Textural features are calculated base on histogram, gradient matrix, run-length matrix, co-occurence matrix. Classification is based on k-NN classifier, the regions of interest can be classified as normal or abnormal. Results of some experiments are presented. All of abnormal regions were classified correctly.
EN
Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.
EN
In this paper, a texture approach is presented for building and vegetation extraction from LIDAR and aerial images. The texture is very important attribute in many image analysis or computer vision applications. The procedures developed for texture problem can be subdivided into four categories: structural approach, statistical approach, model based approach and filter based approach. In this paper, different definitions of texture are described, but complete emphasis is given on filter based methods. Examples of filtering methods are Fourier transform, Gabor and wavelet transforms. Here, Gabor filter is studied and its implementation for texture analysis is explored. This approach is inspired by a multi-channel filtering theory for processing visual information in the human visual system. This theory holds that visual system decomposes the image into a number of filtered images of a specified frequency, amplitude and orientation. The main objective of the article is to use Gabor filters for automatic urban object and tree detection. The first step is a definition of Gabor filter parameters: frequency, standard deviation and orientation. By varying these parameters, a filter bank is obtained that covers the frequency domain almost completely. These filters are used to aerial images and LIDAR data. The filtered images that possess a significant information about analyzed objects are selected, and the rest are discarded. Then, an energy measure is defined on the filtered images in order to compute different texture features. The Gabor features are used to image segmentation using thresholding. The tests were performed using set of images containing very different landscapes: urban area and vegetation of varying configurations, sizes and shapes of objects. The performed studies revealed that textural algorithms have the ability to detect buildings and trees. This article is the attempt to use texture methods also to LIDAR data, resampling into regular grid cells. The obtained preliminary results are interesting.
15
EN
A class of mathematical model s of biological textures based on the multi-variable probability distributions of their morphological spectra is described. It is shown that a large class of such distributions can be presented by sufficient statistics consisting of the coefficients of their expansion into the series of multi-variable Hermite polynomials. The sufficient statistics can then be simplified by rejection of higher-order terms. The general concepts of mathematical models construction are illustrated by examples of textures of several biological tissues (aorta walls, liver and blood). The role of statistics based on absolute values of morphological spectral components and of their cross-correlation coefficients is underlined.
PL
Badanie tekstury jest istotne w wielu zastosowaniach związanych z analizą obrazów dla klasyfikacji, detekcji i segmentacji obiektów. Tekstura stanowi lokalny wzorzec przestrzenny, trudny do zdefiniowania w sposób ścisły. Nie oznacza to jednak, że cecha ta, ze względu na swoją niejednoznaczność, może być ignorowana i pomijana w badaniach nad informacją pochodzącą z obrazów. Tematem przeprowadzonych prac jest interpretacja ortofotomapy prawdziwej (ang. trueortho) w celu automatycznego wykrycia obiektów zabudowy i roślinności. Elementy te na obrazach charakteryzują się różnorodnym kształtem, kolorem i teksturą. W niniejszych badaniach podjęto próbę udowodnienia tezy, że tekstura może stanowić dobry wyznacznik wydzielenia obiektów takich jak drzewa od elementów zabudowy. Procedury teksturalne można podzielić na trzy kategorie: strukturalne, statystyczne i bazujące na filtracji. W niniejszym artykule skupiono się na filtrach teksturalnych – filtrach Gabora, wzmocnionych z wykorzystaniem „energii teksturalnej” Lawsa. Energia teksturalna reprezentuje ilość zmian wewnątrz rozpatrywanego okna na obrazach poddanych określonemu wariantowi filtru. Filtr Gabora jest filtrem liniowym, wykorzystywanym do detekcji krawędzi. Stanowi on uogólnienie transformaty Fouriera, jego reprezentacja częstotliwościowa jest zbliżona do obrazowania systemu wizyjnego człowieka i może być przydatna w procesie opisywania i rozróżniania tekstur. W badaniach wykorzystano dane pozyskane podczas nalotu nad miastem Espoonlahti w Finlandii: dane obrazowe o rozdzielczości terenowej 0.06 m, zarejestrowane kamerą cyfrową Rollei i dane laserowe z systemu TopEye MK II o gęstości 30 punktów/m2.
EN
The texture analysis is important in many applications of image analysis for classification, detection and segmentation of objects. Texture is the local spatial pattern, which is difficult to define strictly. This doesn’t mean, however, that this feature can be ignored and neglected in research on information derived from images, because of its ambiguity. The theme of the study is the interpretation of true orthophoto for automatic detection of building objects and vegetation. These elements are characterized in the image by a variety of shape, color and texture. In the present study the authors attempt to prove the thesis that the texture can be a good indicator for separation of objects such as trees from building elements. Textural procedures can be divided into three categories: structural, statistical and filter based approaches. The paper is focused on the textural filters – the Gabor filters, strengthened by the use of Laws’ "texture energy". The texture energy represents the number of changes within the window in an image subjected to a particular filter variant. The Gabor filter is linear, used for edge detection. It is a generalization of the Fourier transform, its frequency representation is similar to the imaging of human visual system and may be useful in the process of describing and differentiating textures. The data used for study have been collected during a flight over the Finland town Espoonlathi. They were as follow: image data with a spatial resolution of 0.06 m, acquired with a digital camera Rollei, and laser data from the TopEye MK II system with a resolution of 30 points/m2.
PL
Materiałem doświadczalnym były owoce awokado zapakowane trzema sposobami: z pozostawieniem wewnątrz powietrza, próżniowo oraz w modyfikowanej atmosferze. Owoce przechowywano w temperaturze -25°C przez 1, 2, 3, miesiące. W celu pomiaru zmian jakości owoców awokado wykonano analizę tekstury. Obliczono także sublimacyjne ubytki masy. Dokonano pomiaru zmian zawartości gazów w opakowaniach z modyfikowaną atmosferą w czasie przechowywania. Zarówno dla prób analizowanych w całości, jak i w przekroju we wszystkich zastosowanych opakowaniach, z wyjątkiem próżni odnotowano ogólny spadek twardości. W próbach pakowanych w atmosferze powietrza i próżni zaobserwowano wzrost parametrów spoistości, sprężystości, przylepności, gumiastości i żuwalności po całym trzymiesięcznym okresie zamrażalniczego przechowywania. Natomiast zastosowanie opakowań z modyfikowaną atmosferą powodowało ich spadek. Skład gazów w opakowaniach z modyfikowaną atmosferą zmieniał się wraz z upływem czasu przechowywania, wpływając na zróżnicowanie parametrów analizy tekstury. Zmiany masy owoców awokado w żadnej z prób po kolejnych miesiącach przechowywania nie przekroczyły 1 %. Jednocześnie największe ubytki masy zaobserwowano w próbach pakowanych w atmosferze powietrza, najmniejsze zaś w próbach pakowanych w modyfikowanej atmosferze.
EN
The fruit was the experimental material packed up in three kind's avocado of packaging: from leaving inside air, vacuums as well as from modified atmosphere. It fruit were kept was in temperature - 25°C by 1, 2, 3, months. The avocado in aim of measurement of changes quality fruit was used the analysis the texture. The change was examined the physic-chemical, counting the sublimation the decreases of mass also. The measurement of changes of content gases was executed in packag-ing from modified atmosphere in time the storage. The kind of applied packaging inf1uenced on change of hardness of fruit during the three - month storage significantly considerably. It the general fall of hardness was has noted down was for ana-lyzed in the whole tests as well as the section in all applied packaging with except of vacuum it where the growth of hardness was observed was. The atmosphere of air and the reology influenced on growth of features the vacuum (the cohesion, resilience, adhesiveness, gumminess, chewiness) after period the three - month storage in conditions the frozen. The packaging from modified atmosphere caused fall of these parameters. In packaging from modified atmosphere he changed with outf1ow the storage, inf1uencing on differentiation the parameters of analysis of texture together with the composition of gases. The change of mass of fruit the avocado in none of tests after all after next months the storages did not cross 1 %. It the simultaneously largest decreases of mass were observed was in packaging from atmosphere of air, the smallest meanwhile in packaging from modified atmosphere.
PL
W pracy przedstawiono wstępne rezultaty przeprowadzonej próby oszacowania prawidłowego przepływu wieńcowego w oparciu o cyfrową analizę sekwencji standardowych obrazów koronarograficznych naczyń wieńcowych o różnej średnicy. Zastosowano rozszerzony pakiet analizy tekstury w postaci programu MaZdaŽ. Dokonano wyboru najważniejszych parametrów tekstury przydatnych do realizacji założonego zadania. Uzyskano wyniki wskazujące na dużą czułość opracowywanej metody.
EN
The paper presents preliminary results of the normal coronary blood flow estimation by means of texture analysis of the standard coronarography scans. The coronary vessels with the various size were examined. The software MaZdaŽ for texture analysis was used. The most significant parameters of the texture, useful for coronary blood flow estimation, were determined and analyzed. The results of performed analysis indicate the high sensitivity of this method.
PL
W pracy przedstawiono nową metodę opisu tekstur, przystosowaną do analizy grupy obrazów, przedstawiających na różne sposoby ten sam fragment organu. Charakteryzując obszary zainteresowania, uwzględniono nie tylko cechy teksturalne wyliczone na ich podstawie, ale również ich zależność od warunków pozyskiwania obrazów. Zaproponowano kilka sposobów konstrukcji przestrzeni parametrów odzwierciedlających zmianę tekstury, która zachodzi pod wpływem zmian warunków akwizycji. Proponowaną metodę zweryfikowano doświadczalnie w klasyfikacji obrazów tomograficznych wątroby. Rozpoznawano cztery typy tkanki, dla każdego przypadku rozważono trzy momenty akwizycji, związane z obecnością i propagacją środka kontrastującego. Wyniki uzyskane przy użyciu różnych zestawów cech teksturalnych i klasyfikatora w postaci dipolowych drzew decyzyjnych pokazują, że uwzględnienie zmian tekstury pod wpływem propagacji środka kontrastującego znacznie poprawia diagnozę.
EN
In the work, a new method of texture characterization from multiple scan series is presented. Images with the same slice position, acquired at different conditions, are analyzed simultaneously. Thereby not only texture characteristics of the considered region of interest are taken into account, but also their variations over the different acquisition moments. A few approaches to description of these variations were proposed. They were applied in recognition of four types of hepatic tissue. Liver CT images were acquired during the three typical phases related to presence and propagation of contrast material. Experiments with various sets of texture parameters and dipolar decision tree as a classifier showed that simultaneous analysis of texture features derived from three subsequent acquisition moments could considerably improve the classification accuracy.
PL
W pracy przedstawiono wstępne rezultaty cyfrowej analizy standardowych obrazów koronarograficznych z zastosowaniem oceny parametrów tekstury obrazu. Uzyskano wyniki wskazujące na możliwą przydatność wybranej metody dla prostego oszacowania stopnia anizotropii zarówno obrazu wyjściowego, jak też obrazu poddanego uprzednio przekształceniom morfologicznym.
EN
This paper were presents preliminary results of the digital analysis of coronarography images using the methods of texture analysis. The results demonstrated that it is possible simple estimation to determine the degree of the anisotropy, both of the initial images, as well as of images subjected to morphological transformations.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.