Pollution associated with microplastics (MP) over time is becoming a genuine cause of concern because these micro-sized plastics possess the ability to accumulate toxic contaminants of diverse types. Their propensity to absorb or adsorb pollutants from the surroundings increases the toxicity of microplastics. Multiple root causes lead to the accumulation of microplastics in aqueous ecosystems, necessitating specialized techniques for investigating, handling, and disposing of them. This overview elaborates on the several modes of degradation of microplastics in aquatic systems. It further provides insights into the novel ‘Microfluidics’ technique for detecting microplastics in marine environments. Additionally, as a rising hope for the degradation of microplastics through biofilm formation, distinct types of bacteria found in marine habitats are discussed in this paper. Finally, this review elucidates the problems associated with microplastic pollution in aquatic ecosystems and explores methods for their safe disposal in the future.
The importance of microfluidics research is growing, especially in the fields of chemistry, biology or medicine. This is coupled with a growing demand for specialized capillary equipment that allows advanced research at the microscale. Conventional methods of manufacturing such devices are expensive, time-consuming and do not guarantee good results. An alternative to these methods is the use of 3D printing technology. Despite the existence of numerous works presenting the possibilities of 3D printing in the context of creating microfluidic devices, there is a lack of comprehensive works presenting qualitative analysis of printed objects. This paper presents a method of producing microcapillary structures for microfluidics research with the help of 3D printing using stereolithography technology. The quality requirements that the printed objects should meet are defined and all stages of production are characterized. A qualitative analysis of the obtained objects was carried out, taking into account both the influence of individual printing parameters and print processing methods. The results of microfluidic tests using printed objects are also presented. This work is aimed at providing specific knowledge that allows the manufacture of precision devices for microfluidics purposes at low cost.
Purpose: This paper aims to investigate the possibilities of using 3D printing by fused deposition modelling (FDM) technology for developing micro-fluidic devices by printing a benchmark test part. A low-cost desktop printer is evaluated to compare the minimum possible diameter size, and accuracy in the microchannel body. Design/methodology/approach: The parts were designed using SolidWorks 2016 CAD software and printed using a low-cost desktop FDM printer and Polylactic acid (PLA) filament. Findings: Desktop 3D printers are capable of printing open microchannels with minimum dimensions of 300 μm width and 200 μm depth. Research limitations/implications: Future works should focus on developing new materials and optimizing the process parameters of the FDM technique and evaluating other 3D printing technologies and different printers. Originality/value: The paper shows the possibility of desktop 3D printers in printing microfluidic devices and provides a design of a benchmark part for testing and evaluating printing resolution and accuracy.
This paper presents material and technological studies on lab-on-chip (LOC) devices as a first step towards biocompatible and reliable research on microscopic fungi and soil organisms on a microscale. This approach is intended to respond to the growing need for environmental control and protection, by means of modern, miniaturized, portable and dependable microfluidics instrumentation. The authors have presented herein long-term, successful cultivation of different fungi representatives (with emphasis put on Cladosporium macrocarpum) in specially fabricated all-glass LOCs. Notable differences were noted in the development of these creatures on polymer, polydimethylosiloxane (PDMS) cultivation substrates, revealing the uncommon morphological character of the fungi mycelium. The utility of all-glass LOCs was verified for other fungi representatives as well – Fusarium culmorum and Pencilium expansum, showing technical correspondence and biocompatibility of the devices. On that basis, other future applications of the solution are possible, covering, e.g. investigation of additional, environmentally relevant fungi species. Further development of the LOC instrumentation is also taken into consideration, which could be used for cultivation of other soil organisms and study of their mutual relationships within the integrated microfluidic device.
Microfluidics is a relatively young field of study and production of microfluidic devices still has roomfor improvement. Microfluidic devices can be found in many applications, especially in biology due toimmense capabilities to mimic physiological conditions of a living organism. To make the productionmore convenient and predict the conditions in designed microdevice CFD modelling can be used. Itallows predicting, among the others, flow pattern through microchannels and thermal conditions. It cansave expensive and time-consuming trial and error method in microdevice prototyping as a modificationof geometry and working conditions is much simpler in CFD modelling. In this work construction of the CFD model of flow through microfluidic cell culture device is presented. To verify the CFD modelan analytical solution was used. The CFD model results were very close to analytical ones, the averagerelative difference between the flow velocity was equal to 2.57%. Analysis of flow field results indicatedpossible improvement of medicine transport to cell culture chambers. The attempt to use simplified μPIV measurement was also a part of the research. These results were compared to the analytical model, the average relative error was equal to 34.55%. The main purpose of measurement attempt was to gainexperience inμPIV measurement so the average relative error value was still tolerable. Thanks to this attempt, useful conclusions were drawn allowing for more accurate measurements in the future.
PL
Badania nad urządzeniami mikroprzepływowymi to stosunkowo młoda dziedzina nauki, a w produkcji urządzeń mikroprzepływowych wci ̨a ̇z jest miejsce na poprawę. Urządzenia mikroprzepływowe znajdują wiele zastosowań, zwłaszcza w biologii ze względu na ogromne możliwości w naśladowaniu warunków fizjologicznych ̇żywego organizmu. Aby ułatwić produkcję i przewidzieć warunki panujące w projektowanym mikrourządzeniu, można zastosować modelowanie CFD. Pozwala ono przewidzieć m.in. warunki przepływu przez mikrokanały oraz warunki termodynamiczne w nich panujące. Modelowanie CFD pozwala zaoszczędzić na kosztownej i czasochłonnej metodzie prób i błędów w produkcji mikrourządzeń, ponieważ ̇z modyfikacja geometrii i warunków pracy jest znacznie prostsza w modelowaniu CFD. W tej pracy przedstawiono konstrukcję modelu CFD przepływu przez mikroukład w systemie mikro przepływowej hodowli komórek. Aby zweryfikować model CFD, skonstruowano model analityczny. Wyniki modelu CFD były bardzo zbliżone do wyników analitycznych, ponieważ średnia względna różnica między profilami prędkości przepływu wynosiła 2,57%. Analiza wyników polowych wskazała na możliwą poprawę efektywności dostarczenia leku do komór hodowlanych. Opracowanie wyników próbnego pomiaru μPIV było równie ̇z częścią tego badania. Po opracowaniu wyników, porównano je z wynikami modelu analitycznego - średni błąd względny wyniósł 34,55%. Głównym celem próbnego pomiaru było zdobycie doświadczenia w pomiarze μPIV, więc średnia wartość błędu względnego była nadal dopuszczalna. Dzięki tej próbie wyciągnięto użyteczne wnioski pozwalające na dokładniejsze pomiary w przyszłości.
The micro-Particle Image Velocimetry (micro-PIV) was used to measure flow velocities in micro-channels in two passive micromixers: a microfluidic Venturi mixer and a microfluidic spiral mixer, both preceded by standard “Y” micromixers. The micro-devices were made of borosilicate glass, with micro-engineering techniques dedicated to micro-PIV measurements. The obtained velocity profiles show differences in the flow structure in both cases. The micro-PIV enables understanding the micro-flow phenomena and can help to increase reproducibility of micromixers in mass production.
Multiple pipetting is a standard laboratory procedure resulting in the compartmentalisation of a liquid sample. Microfluidics offers techniques which can replace this process by the use of tiny droplets. Passive manipulation on droplets is an interesting and promising approach for the design of microfluidic devices which on one hand are easy-to-use and on the other, execute complex laboratory procedures. We present a comprehensive study of the geometry of microfluidic components which encode different operations on droplets into the structure of the device. The understanding of hydrodynamic interactions between the continuous flow and a droplet travelling through confined space of nontrivial microfluidic geometries is crucial for a rational and efficient design of new generation of modular microfluidic processors with embedded instructions.
Praca prezentuje zastosowanie układu mikrokanałów do konstrukcji przepływowego wiskozymetru o zminimalizowanych wymaganiach dotyczących objętości badanej próbki. Istotą jego działania jest obserwacja granicy kontaktu strumieni cieczy badanej i referencyjnej w mikrokanale i odniesienie jej pozycji do stosunków lepkości tych cieczy. Otrzymane wyniki pomiarów tak przebadanej cieczy jonowej zostały potwierdzone techniką pasywnej mikroreologii optycznej wskazując na możliwość wykorzystania obydwu technik do pomiarów, w których minimalizacja objętości próbki ma kluczowe znaczenie.
EN
The application of microchannel-based flow-through viscometer characterized by minimized sample volume requirements is presented in the paper. The measurement was performed by the observation of laminar fluid-fluid interphase between two liquids and relating its position to viscosity ratio of both liquids. The obtained results were cross-checked with the passive optical rheometry showing a possibility of using these two techniques in case when a small sample volume is crucial.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper is devoted to the modeling deformation of biological cell in microfluidic microchannel devices. The background and purpos of actual research is developing mechanical model of the biological cell shell for improving simulation and design of microfluidic lab-chip diagnostic devices.
The mesoscale description of multiphase flow in a typical Lab-chip diagnostic device is presented in actual article. The mesoscopic lattice Boltzmann method, which involve evolution equations for the single particle distribution function, was applied for the modeling of complex microfluidic flows. The general D2Q9 lattice Boltzmann formulation, considered multiphase flows, was developed. Three types of boundary conditions were used for the mesoscopic modeling: “ghost-fluid”, “bounce-back” and “periodic boundaries”. Traditional Dirichlet and Neumann macroscopic boundary conditions were transformed into mesoscopic lattice formulations. Algorithm of fluid flow solution, based on BGK single-relaxation-time scheme was proposed and implemented. The scaling procedure was used for physical parameters convertion into non-dimensional units. Simulation procedure was tested on a fluid flow with single solid particle. The final results showed good consistence with fundamental flow phenomena.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Particle Image Velocimetry (PIV) is a well-established measurement technique in area of fluid mechanics [1]. Its main idea is monitoring the displacement of tracer particles over time to obtain the flow’s velocity field. Although the technique is very flexible and widely used, it cannot be applied for flows in geometries of characteristic dimensions of order of millimeters or micrometers, which is often desired e.g. for visualization of the flow field between the centrifugal pump impeller and volute, in case of wall-slip flows in rheological investigations or generally in microfluidics area. In such scales the direct application of PIV is impossible due to technological issues: used in PIV lightning system – a light sheet used for slicing the investigated area will not work due to near-wall reflections, optical elements limited laser damage threshold and align problems. Therefore the light delivery system has to be completely redesigned, but as the other system components, data acquisition system and light source remain untouched, the adaptation of PIV system is possible in form of micro PIV [2,3]. In current work we would like to test the possibility of building such an adapter, aiming for costs minimization, therefore we decide to reduce the microPIV system, using the breadboard-mounted set of opto-mechanical elements instead of using fluorescent microscope.
W artykule przedstawiono wyniki prac wstępnych nad konstrukcją i wykonaniem zaworu mikrofluidycznego. Zawór wykonano w hybrydowej technologii polimerowo-ceramicznej. Zawór składa się ze sztywnego ceramicznego podłoża, w którym zintegrowano kanały mikrofluidyczne oraz wielowarstwową cewkę grubowarstwową, a także elastycznej membrany wykonanej z polidimetylosiloksanu (PDMS). Połączenie polimerowej membrany z ceramicznym podłożem uzyskano w wyniku modyfikacji ich powierzchni za pomocą plazmy tlenowej. Zamknięcie zaworu mikrofluidycznego, uzyskano w wyniku oddziaływania między magnesem stałym, przymocowanym do elastycznej membrany, a zagrzebaną cewką zasilaną prądem stałym. W przedstawionej konstrukcji możliwe było ugięcie membrany o grubości 500 μm, o około 150 μm. Uzyskane ugięcie było wystarczające do zablokowania przepływu cieczy, wewnątrz mikrofluidycznej struktury LTCC.
EN
Preliminary results of a microfluidic valve development and fabrication process is presented in the paper. The valve is made using hybrid polymer-ceramic technology. The valve is built of rigid ceramic substrate with embedded microfluidic channels and integrated thick-film multilayer coil using LTCC (low temperature co-firing ceramic) technology and flexible membrane made of polydimethylosiloxane (PDMS). The PDMS membrane is bonded to the LTCC substrate using plasma oxidation process. Blocking of the microfluidic channel inside the LTCC substrate is achieved by interaction between permanent magnet attached to the membrane and DC supplied coil embedded in the LTCC substrate. Using presented construction it is possible to obtain approximately 150 μm deflection of the 500 μm-thick PDMS membrane. The resulting deflection was sufficient to block fluid flow inside the LTCC microfluidic structure.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The importance of interaction between mechanical CAD workflow and fluid-flow CAE simulations in modern micromachinery design projects are investigated. Fluid flow models for simulating multiphase and multicomponent microfluidic flows were analyzed and presented.
Microfluidic systems are used in a wide range of applications, including medical diagnostics, cell engineering and bioanalytics. In this work we focused on “Lab-on-a-chip” microsystems for cell cultivation. A troublesome problem of gas bubbles entering microdevices causing signal interferences and cells damage was emphasized. A novel, integrated debubbler in the form of cylindrical traps covered with thin PDMS membrane was designed and manufactured. Demonstrated debubbler was successfully applied in a long-lasting culture of HT-29 cell aggregates.
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Two types of microfluidic devices demonstrators designed for biomedical applications are presented. The first one is modular lab-on-achip (LOC) system, intended for the electrochemical detection of psychotropic drug presence and content in the human saliva. The second device was an optical and microfluidic system for bacteria detection and recognition.
PL
W niniejszym artykule przedstawiono zastosowania dwóch układów mikrofluidycznych w diagnostyce biomedycznej. Pierwszy lab-ona- chip (LOC) przeznaczony jest do elektrochemicznego oznaczania leków psychotropowych w ślinie, natomiast drugi do optycznego wykrywania oraz rozpoznawania bakterii.
Prezentowana praca dotyczy zagadnień konstrukcji głowicy czujnika do klasyfikacji właściwości użytkowych biopaliw ciekłych przeznaczonych dla silników wysokoprężnych. Ze względów praktycznych, badanie właściwości olei powinno być wykonywane w jednorazowym, tanim naczyniu. Jako wzmiankowane naczynie celowym wydaje się zastosowanie kapilar optycznych. Umożliwiają one automatyczne wprowadzenie cieczy do wnętrza kapilary i badania optyczne cieczy z zastosowaniem przejść fazowych gaz - ciecz oraz fluorescencji. Analiza przejścia fazowego umożliwia określenie właściwości użytkowych paliwa tj. energii potrzebnej do wytworzenia fazy gazowej jak i szybkości przejścia paliwa w fazę gazową. Wobec wysokich temperatur wrzenia olei i estrów pochodzenia roślinnego wynoszących od około 200 do 360°C oraz bezkontaktowego transferu ciepła do cieczy znajdującej się w kapilarze, istotnym zagadnieniem okazało się opracowanie właściwego mikrogrzejnika. Do tego celu zastosowano technologię hybrydową i węgliko-krzemową. Wykonano i testowano dwa typy łóż głowicy oraz dwa typy optrod. Przeprowadzone badania głowicy pokazały, że zakładana klasyfikacja paliw dla silników wysokoprężnych w wykonanej głowicy jest możliwa i bazuje na zakresie czasów przejścia fazowego cieczy w gaz i szybkości narastania fazy gazowej.
EN
The paper presents the constructions of a low-cost disposable optrode for multiparametric classification of bio-diesel fuels. The capillary optrode can be used in the liquid-gas phase transition classification mode and the fluorescence classification mode. The liquid-gas phase transition classification can be correlated with the evaporation energy of the liquid sample and with its evaporation rate. Those parameters are indirectly connected with fuel usability in diesel engines. This type of bio-diesel fuel classification requires use of high temperatures between 200°C and 360°C, depending on the type of fuel to be analyzed. The heater operating temperature must be greater than that because of non contact heat transfer between the heater and the optrode. A suitable micro-heater using SiC has been designed and evaluated. Two versions of the sensor head base that position the optrode in relation to auxiliary optical fibers and the micro-heater has been evaluated, as well as two versions of optrodes. In conclusion the classification of bio-diesel fuels was proven possible based as two major parameters on the time needed for vapor phase creation in the liquid and the speed of vapor volume increase.
17
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Rapid development of analytical microsystems, also often called as labs-on-a-chip and used to perform various chemical and biochemical analysis with nano- and pico-volumes of the sample, has been observed for almost two decades. Successful application of analytical microsystems in medical and veterinary practices is relevant to many factors but one of them is low price of the disposable microsystem - often in the form of a chip. The chips are made of cheap materials, for example, polymers. One of such material is a negative photoresist SU-8. It is characterized by biocompatibility and possibility of easy fabrication of various three-dimensional fluidic microstructures. Moreover, SU-8 is transparent for visible light. It makes SU-8 attractive material for labs-on-a-chip dedicated for genetic material analysis by real-time polymerase chain reaction (PCR). In this paper, we present the results of investigations of the influence of PCR-like temperature profiling on the transmittance spectra. The autofluorescence effect of SU-8 illuminated with various lasers has also been investigated as one of the factors limiting sensitive fluorescence readout. The results obtained showed that SU-8 can be successfully applied as labs-on-a-chip material but, due to high SU-8 autofluorescence, red-line fluorochromes are preferred when high-sensitivity fluorescence detection is required.
18
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In general flow cytometry enables the characterization of individual cells/microparticles. When a sample is injected into a flow cytometer, the randomly distributed cells are ordered into a stream of single cells. Hence, they can be individually analyzed in the detection system. In this paper, an optoelectronic compact and portable system for bacteria cells detection is described. The system consists of PDMS (polydimethylsiloxane) microfluidic chip, a duralumin holder with microfluidic connectors - inlets/outlets, as well as optic fiber connectors and waveguides for laser diode and photodetectors (avalanche photodiode BPYP 59 or photomultiplier 9658B). The fluorochrome is excited by light beam of an appropriate wavelength coming from a light source, e.g., the laser diode. The excitation light passes through hydrodynamically focused cells in the middle of the channel. After optical filtering, the light emitted by the fluorochrome is detected by a photodetector. Electrical signals from the selective nanovoltmeter are amplified and collected by the computer electronic system. Since in the real sample bacteria cells are selectively labeled with the fluorophores or antibodies conjugated with fluorochrome, in our experiments to evaluate lower detection limits of the developed detection system, exemplary fluorescent dye solutions of sodium fluorescein were used as testing solutions.
Praca dotyczy zadania 5 - "Wykonanie wieloparametrycznego klasyfikatora właściwości użytkowych biopaliw ciekłych" projektu InTechFun. Celem zadana jest wykonanie wzmiankowanego klasyfikatora charakteryzującego się wymienną optrodą oraz niskim czasem i kosztem jednostkowej klasyfikacji. Prezentowany materiał pokazuje zgodną z charmonogramem realizację dwu punktów kontrolnych, tj: D5.1 - "Seria bazowych struktur hybrydowych głowicy" oraz D5.2 - "Seria struktur światłowodowych konwertujących promieniowanie" oraz pokazuje osiągnięcie kamienia milowego K5.4 - "Identyfikacja optoelektronicznych charakterystyk sprzężenia modów dziurawych" zachodzących dla 24 i dla 30 miesiąca projektu.
EN
The paper concerns 5-th task "Multiparametric classificator of liquid biofuels parameters" of InTechFun projects. The aim of the task is elaboration of mentioned classificator that is characterized by disposable capillary optrode and thereforo low cost and short time of single classification. The paper presents that two control pionts D5.1 "Hybrid head" and D5.2 "capillary structures of light convertion" of the task 5 are done in accordance with harmonogram. The paper presents also the milestons K5.4 "Optoelectronic characteristic of hole modes identification" realization.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.