Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 28

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Internet of Things
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Freight transportation is a crucial part of the global economy, but it encounters several complex challenges, with truck drivers at the centre of these issues. These professionals, responsible for transporting goods over long distances, often work in challenging conditions, exposing them to a range of risks, including physical, psychological, and chemical hazards. These risks make the profession less appealing to younger drivers, leading to an ageing workforce and worsening the driver shortage crisis in the road transport sector. This article aims to identify the various risks faced by truck drivers and examine their negative impacts on several critical aspects, including company image, service quality, financial implications, and road safety. Additionally, the article explores the transformative impact of the Internet of Things (IoT) and autonomous vehicles (AV) on the truck driving profession.
PL
W artykule przedstawiono koncepcję systemu nadzoru ewakuacji osób z budynku użyteczności publicznej. Celem wspomnianego rozwiązania technicznego jest zapewnienie sprawnego przeprowadzania ewakuacji osób z miejsca zagrożenia. Do poprawnego działania systemu wymagane jest pozyskiwanie w czasie rzeczywistym lokalizacji ewakuowanych osób, co uzyskano dzięki technologii Bluetooth. W tym przypadku oszacowanie lokalizacji odbywa się na podstawie pomiaru siły sygnału transmitowanego z nadajników, które mają formę opasek noszonych na nadgarstku. Dzięki zastosowanym czujnikom, opaski monitorują i przekazują informacje o funkcjach życiowych osób objętych opieką.
EN
This article presents the concept of a system for supervising the evacuation of people from a public building. The aforementioned technical solution aims to ensure the smooth evacuation of people from the place of danger. For the system to function appropriately, real-time acquisition of the location of evacuees is required, which was achieved through Bluetooth technology. In this case, the location is estimated by measuring the strength of the signal transmitted from the transmitters, which take the form of wristbands worn on the wrist. Thanks to the sensors used, the wristbands monitor and transmit information about the vital functions of the care recipients.
EN
Technologies, processes, and systems are not immune to failure, which is why robust monitoring systems are crucial to ensure their continued functionality and safety. An interdisciplinary approach that combines engineering, data science, and material science allows for more comprehensive measurement and analysis, enabling better decision-making and more accurate predictions of performance. The integration of these technologies leads to increased safety, reduced human error, and significant cost savings by preventing costly repairs and downtime. Continuous monitoring helps in avoiding catastrophic failures, allowing for early detection of issues before they escalate. Additionally, it opens opportunities for improving the design of mechanical systems and structures, optimizing the organization of maintenance. By reducing human impact and enhancing safety, these monitoring systems offer a more secure and efficient operation. Furthermore, through advanced predictive analytics, the remaining service life can be estimated, facilitating more effective planning. The development of such smart, intelligent mechanical systems and structures promises a future where maintenance is proactive rather than reactive, creating a safer, more sustainable environment for both operators and systems by leveraging advanced sensors, data analytics, and adaptive technologies for real-time monitoring and damage detection.
PL
Metryki QoS (Quality of Service) w testach aplikacji internetowych dostarczają wielu informacji o zachowaniu danej aplikacji w warunkach niestabilnego połączenia sieciowego. Pomiar ten jest jednak często dokonywany w hermetycznych warunkach laboratoryjnych. Skutkuje to uproszczeniem ich analizy kosztem niepełnego obrazu zachowania i środowiska aplikacji oraz zachowań użytkownika. Aby zaadresować ten problem, opracowane urządzenie nazwane MANIANA (Mobile Appliance for Network Interrupting, Analysis & Notorius Annoyance). Umożliwia ono przeprowadzanie testów aplikacji w sieci domowej użytkownika. Oparte jest ono o platformę Raspberry Pi4 oraz otwartoźródłowe komponenty, umożliwiające testy aplikacji w sposób bezpieczny, wydajny oraz uniwersalny.
EN
QoS (Quality of Service) metrics obtained during network application testing provide lots of information about applications’ behavior in conditions of unstable network connections. However, obtaining this values is done in a hermetic lab environment. That simplifies its analysis and provides an incomplete picture of applications’ behavior, environment and user behaviour. To address this problem, a device called MANIANA (Mobile Appliance for Network Interrupting, Analysis & Notorius Annoyance) was developed. It allows for conducting application tests in a home environment. The device is made based Raspberry Pi4 minicomputer and Open Source solution and allows safe, robust and universal testing applications.
PL
W niniejszym artykule opisano rezultaty uzyskane w ramach zrealizowanego projektu definiowanego programowo frameworka wąskopasmowego interfejsu radiowego dla urządzeń Internetu Rzeczy. Przedstawiono elementy składowe konfigurowalnego interfejsu radiowego oraz jego charakterystykę eksploatacyjną.
EN
In the article the results obtained in the design of a software-defined framework for a narrowband radio interface for Internet of Things devices are described. The components of the configurable radio interface and its operational characteristics are presented.
PL
Liczniki mediów coraz częściej wyposażane są w możliwość zdalnego odczytu wskazań. Jest on realizowany w modelu stacjonarnym lub obchodzonym. W modelu obchodzonym najpopularniejszym schematem komunikacji jest periodyczne nadawanie ramek pomiarowych, jednak jak pokazuje analiza w niniejszej pracy, schemat komunikacji oparty na energooszczędnym nasłuchu (próbkowaniu preambuły) jest bardziej energooszczędny, a także wymaga mniej czasu na realizację transmisji. Wskazane także zostały parametry mające wpływ na wybór schematu komunikacji.
EN
Utility meters are increasingly equipped with the ability to remote readouts process. It is implemented in an stationary or walk-by model. In walk-by model, the most popular communication scheme is the periodic transmission of measurement frames, but as the analysis in this work shows, the communication scheme based on low power lis- tening (preamble sampling) is more energy-efficient and also requires less time to complete the transmission. Parameters influencing the choice of communication scheme were also indicated.
EN
Environmental management systems (EMS) are essential in promoting sustainable practices and mitigating the adverse effects of human activities on the environment. As technology continues to advance, there is an increas-ing opportunity to utilize advanced technologies to improve environmental management systems. This article examines the potential of different advanced technologies, such as artificial intelligence (AI), blockchain, big data, and the Internet of Things (IoT), within the context of environmental management systems. This article intends to offer valuable insights to researchers, practitioners, and policymakers by examining the potential uses of AI, blockchain, big data, and IoT in environmental management systems. The goal is to demonstrate how these ad-vanced technologies can be leveraged to enhance sustainability, boost environmental performance, and yield favourable environmental results across different sectors and industries.
EN
To ensure a given quality of service in the networks of the Internet of Things, short error-correcting codes are used, in particular, low-density parity-check codes. The paper proposes an approach for decoding these codes based on the joint application of belief propagation and differential evolution procedures. It is shown that in order to reduce the search area of error vectors based on differential evolution, it is necessary to use the least reliable basis of the parity-check matrix. Flowchart and pseudocode of the combined decoding algorithm of short low-density parity-check codes were presented. The simulation results showed that the proposed decoding method provides an additional gain from encoding compared to the classical decoding method. The application of the presented iterative decoding method of short low-density parity-check codes will improve the efficiency of data transmission in the infrastructure of the Internet of Things.
PL
Aby zapewnić określoną jakość usług w sieciach Internetu Rzeczy, stosowane są krótkie kody korekcji błędów, w szczególności kody kontroli parzystości o niskiej gęstości. W artykule zaproponowano podejście do dekodowania tych kodów oparte na wspólnym zastosowaniu procedur propagacji zaufania i ewolucji różnicowej. Pokazano, że w celu zmniejszenia obszaru wyszukiwania wektorów błędów w oparciu o ewolucję różnicową, konieczne jest użycie najmniej wiarygodnej podstawy macierzy kontroli parzystości. Przedstawiono schemat blokowy i pseudokod połączonego algorytmu dekodowania krótkich kodów kontroli parzystości o niskiej gęstości. Wyniki symulacji wykazały, że proponowana metoda dekodowania zapewnia dodatkowy zysk z kodowania w porównaniu z klasyczną metodą dekodowania. Zastosowanie przedstawionej iteracyjnej metody dekodowania krótkich kodów o niskiej gęstości parzystości poprawi wydajność transmisji danych w infrastrukturze Internetu Rzeczy.
9
Content available remote Iot based ECG: hybrid cnn-bilstm approach for myocardial infarction classification
EN
Cardiovascular disease such as ischemic heart disease and stroke are the most dangerous diseases in the WHO stats. Myocardial Infarction (MI), an ischemic disease of the heart, occurs due to a sudden blockage in the coronary arteries that supply blood to the heart causing a lack of oxygen and nutrients. The MI patient needs continuous monitoring using electrocardiography, the latter is always at risk of developing complications such as arrhythmias. As a solution, we proposed an internet of things (IoT) based ECG system for monitoring, the application layer was reserved for the detection of MI and arrhythmias using artificial intelligence so that the patients can keep being monitored even outside health facilities. For this purpose, this paper proposed a hybrid Convolutional Neural Network (CNN) – Bidirectional Long Short-Term Memory (BiLSTM) approach to classify ECG signals and evaluates its performance by using raw and preprocessed data, and comparing the results to related studies. Two datasets have been used in this classification. The results were promising, the model has scored 99.00% accuracy on raw data classifying 4 classes, and 99.73% accuracy on a larger preprocessed data for 3 classes classification. The proposed model is suitable to serve in our monitoring task.
PL
Choroby układu krążenia, takie jak choroba niedokrwienna serca i udar mózgu, to najniebezpieczniejsze choroby według statystyk WHO. Zawał mięśnia sercowego (MI), choroba niedokrwienna serca, występuje w wyniku nagłego zablokowania tętnic wieńcowych dostarczających krew do serca, powodując brak tlenu i składników odżywczych. Pacjent po zawale serca wymaga ciągłego monitorowania za pomocą elektrokardiografii, gdyż zawsze istnieje ryzyko wystąpienia powikłań w postaci arytmii. Jako rozwiązanie zaproponowano system monitorowania EKG oparty na Internecie rzeczy (IoT), którego warstwa aplikacyjna została zarezerwowana do wykrywania zawału serca i arytmii z wykorzystaniem sztucznej inteligencji, dzięki czemu pacjenci mogą być monitorowani nawet poza placówkami służby zdrowia. W tym celu w artykule zaproponowano hybrydowe podejście oparte na konwolucyjnej sieci neuronowej (CNN) i dwukierunkowej długiej pamięci krótkotrwałej (BiLSTM) do klasyfikacji sygnałów EKG i oceny ich działania przy użyciu surowych i wstępnie przetworzonych danych oraz porównaniu wyników z powiązanymi badaniami. W tej klasyfikacji wykorzystano dwa zbiory danych. Wyniki były obiecujące, model uzyskał 99,00% dokładności w przypadku surowych danych klasyfikujących 4 klasy i 99,73% dokładności w przypadku większych, wstępnie przetworzonych danych w przypadku klasyfikacji 3 klasy. Zaproponowany model nadaje się do realizacji postawionego zadania monitorowania.
EN
The escalating prevalence of Internet of Things (IoT) devices has necessitated efficient data dissemination methods to optimize the unprecedented volume of generated data. The rapid expansion of IoT devices and the resulting surge in data creation underscore the necessity for advanced data dissemination methods. A noticeable gap in existing literature prompts a critical review, specifically addressing challenges and opportunities in IoT data dissemination techniques. This paper aims to categorize and analyze existing data dissemination techniques, highlighting their strengths and limitations. Additionally, it explores emerging opportunities and innovations that can shape the future of IoT applications. Furthermore, the discussion addresses challenges in data dissemination and explores innovative solutions, including machine learning, AI-based strategies, edge, and fog computing, blockchain integration, and advanced 5G/6G networks. The hope is that this study sets the stage for innovative ideas contributing to the efficiency and robustness of IoT applications, informing future endeavours in this dynamic and evolving landscape.
EN
Rapid spread and effective integration of Internet of Things (IoT) devices across various sectors has brought unparalleled connectivity and efficiency, but has also introduced amplified vulnerabilities with respect to data breaches. This article offers an in-depth examination of the economic impacts of IoT data breaches, focusing on the associated costs and emerging statistical trends. Through comprehensive analysis, we explore the direct and indirect financial burdens, including immediate response expenses, long-term reputational damage, legal liabilities, and regulatory penalties. Utilizing recent case studies and statistical data, we highlight the economic magnitude of IoT breaches and the factors that amplify their costs. Our research emphasizes the critical need for enhanced IoT security measures and for strategic risk management to protect organizations from substantial financial losses. The findings may serve as a crucial resource for businesses, policymakers, and cybersecurity professionals, advocating for proactive steps to fortify IoT ecosystems against the escalating threat of data breaches.
EN
By reviewing the current state of the art, this paper opens a Special Section titled “The Internet of Things and AI-driven optimization in the Industry 4.0 paradigm”. The topics of this section are part of the broader issues of integration of IoT devices, cloud computing, big data analytics, and artificial intelligence to optimize industrial processes and increase efficiency. It also focuses on how to use modern methods (i.e. computerization, robotization, automation, machine learning, new business models, etc.) to integrate the entire manufacturing industry around current and future economic and social goals. The article presents the state of knowledge on the use of the Internet of Things and optimization based on artificial intelligence within the Industry 4.0 paradigm. The authors review the previous and current state of knowledge in this field and describe known opportunities, limitations, directions for further research, and industrial applications of the most promising ideas and technologies, considering technological, economic, and social opportunities.
EN
The Internet of Things is a network of connected devices that can communicate and share data over the Internet. These devices often have sensors that collect data for various purposes, such as usage statistics, data processing, or performing specific actions based on the collected data. Also, medical Internet of Things devices are crucial in monitoring critical functions, measuring blood glucose levels, indicating when patients require medicine, and ensuring timely medication delivery. Communication in the Internet of Things is demanding, requiring diverse protocols that address communication security concerns. These protocols must be robust and secure, considering technical factors such as the network objective, energy requirements, and the nature of the communication because they can be exploited. This paper proposes an innovative system with a security protocol that supports and improves communication security in modern Internet of Things networks. The protocol aims to enhance communication safety between interconnected devices for information exchange in medicine or healthcare, ensuring the confidentiality and integrity of sent data and devices. The proposed protocol, tested through formal and automated verification, meets all security goals, including identity verification, anonymity protection, and access revokement. It also protects against man-in-the-middle, modification, replay, and impersonation attacks.
EN
This paper introduces a novel approach to building network cluster structures, based on the modified LEACH algorithm. The proposed solution takes into account the multitasking of the network infrastructure, resulting from various functions performed by individual nodes. Therefore, instead of a single head, dedicated to a given cluster, a set of heads is selected, the number of which corresponds to the number of performed functions. Outcomes of simulations, comparing the classical and the multifunctional approach, are presented. The obtained results confirm that both algorithms deliver similar levels of energy consumption, as well as efficiency in terms of the number of individual nodes discharged.
PL
W artykule przedstawiono system służący do oceny stanu poszczególnych elementów towarowego taboru kolejowego w sposób zautomatyzowany. System służy do pomiaru kluczowych parametrów układu jezdnego wagonu towarowego taboru kolejowego za pomocą sensorów. Dane pomiarowe przesyłane na serwer pozwalają na detekcję uszkodzeń. Dane pomiarowe, mogą służyć do predykcji stanów awaryjnych co pozwala na wyłączenie uszkodzonego składu z użytkowania zanim spowoduje on znaczne utrudnienia w ruchu kolejowym. System oprócz wymienionych funkcji spełnia również rolę geolokalizatora taboru stosowanego w celu optymalizacji zarządzania składami towarowymi.
EN
The article presents system which is used for evaluation, work conditions of rolling stock elements in automated way. System is used to measure key parameters of rolling stock elements with the use of five types of sensors. Measurement data located on server gives the possibility to detect damage. Measurement data also could be used to predict emergency state what gives possibility to stop and repair some elements of rolling stock and that could improve security of rail traffic. In order to optimize management of rolling stock, system has the functionality of geolocation.
16
Content available remote IoT system for monitoring sick and disabled
EN
The aim of the study was to build a system for monitoring the ill and disabled people. The construction of the system was based on a microcontroller and a set of sensors that collect data about the patient. A heart disease diagnosis module was developed based on sensor data. Accuracy standards were set in which the system had to operate. The accuracy of the system was tested and compared with designated standards.
PL
Celem było zbudowanie systemu monitorowania chorych i niepełnosprawnych. Budowę systemu oparto o mikrokontroler i zestaw czujników zbierających dane o pacjencie. Opracowano moduł diagnozy choroby serca w oparciu o dane z czujników. Wyznaczono standardy dokładności w jakich musiał działać system. Zbadano dokładność systemu i porównano z wyznaczonymi standardami.
EN
In the Industrial Internet of Things, a wide variety of sensors are distributed all over the environment to monitor data collection, thereby allowing industrial processes to be monitored more efficiently. One of the fundamental goals of IIoT is to provide the highest level of reliability while simultaneously increasing network lifetime, reducing power consumption, and preventing delays. 6TiSCH is a popular communication standard relied upon in IIoT. The aim of the present study is to propose an inter-layer method that simultaneously considers network scheduling and routing processes based on TSCH and RPL approaches in multi-sink environments. The proposed method is intended to address the limitations of IIoT and meet the requirements of field-specific applications.
EN
In this paper we share our experience with remote software updates for NB-IoT devices. The experience was collected over the years, when managing a fleet of tens of thousands of NB-IoT wireless sensors deployed worldwide by our customers. The paper discusses the main concerns that must be taken into account when designing the remote software over the air (SOTA) update mechanism, describes the remote update algorithm developed and used by us and presents the achieved experimental results based on remote software update of 5 000 NB-IoT sensors deployed in 10 European countries.
PL
W tym artykule dzielimy się naszymi doświadczeniami ze zdalnymi aktualizacjami oprogramowania w urządzeniach NB-IoT. Doświadczenie zbieraliśmy przez lata, zarządzając flotą dziesiątek tysięcy czujników bezprzewodowych, które używane są na całym świecie przez naszych klientów. W artykule omówiono główne zagadnienia, które należy wziąć pod uwagę przy projektowaniu mechanizmu zdalnej aktualizacji oprogramowania (SOTA), opisano algorytm zdalnej aktualizacji opracowany i wykorzystywany przez nas oraz omówiono eksperymentalne wyniki aktualizacji oprogramowania na podstawie aktualizacji 5 000 czujników NB-IoT pracujących w 10 krajach europejskich.
EN
The main purpose of this paper is a systematic literature review on retrofitting tools, equipment, and infrastructure in the industrial domain. The methods used for the research were a systematic literature review: publication analysis, selection of databases, and appropriate modification of queries in individual databases. Findings were presented using a map of keywords, clusters, and charts. The main result of the conducted research was the identification of the main trends in the retrofitting area. The trends developed within the review can support further research into the direction of retrofitting methods and the factors determining the choice of specific techniques and tools in the digitalisation of manufacturing enterprises.
EN
The influence of artificial intelligence (AI) in smart cities has resulted in enhanced efficiency, accessibility, and improved quality of life. However, this integration has brought forth new challenges, particularly concerning data security and privacy due to the widespread use of Internet of Things (IoT) technologies. The article aims to provide a classification of scientific research relating to artificial intelligence in smart city issues and to identify emerging directions of future research. A systematic literature review based on bibliometric analysis of Scopus and Web of Science databases was conducted for the study. Research query included TITLE-ABS-KEY (“smart city” AND “artificial intelligence”) in the case of Scopus and TS = (“smart city” AND “artificial intelligence”) in the case of the Web of Sciences database. For the purpose of the analysis, 3101 publication records were qualified. Based on bibliometric analysis, seven research areas were identified: safety, living, energy, mobility, health, pollution, and industry. Urban mobility has seen significant innovations through AI applications, such as autonomous vehicles (AVs), electric vehicles (EVs), and unmanned aerial vehicles (UAVs), yet security concerns persist, necessitating further research in this area. AI’s impact extends to energy management and sustainability practices, demanding standardised regulations to guide future research in renewable energy adoption and developing integrated local energy systems. Additionally, AI’s applications in health, environmental management, and the industrial sector require further investigation to address data handling, privacy, security, and societal implications, ensuring responsible and sustainable digitisation in smart cities.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.