Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wielomiany Legendre'a
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, a class of time fractional partial integro-differential equations (FPIDEs) with initial conditions is studied. Some operational matrices are used to reduce a FPIDE problem to a system of algebraic equations with special properties. The resulted system is solved to give an approximate solution to the problem. Error estimation is also discussed for the approximate solution. Finally, some numerical examples are given to show the accuracy of the proposed method.
EN
Introduction and aim: Selected elementary material about Legendre polynomials have been shown in the paper. The algorithm of expanding functions in the series by Legendre polynomials has been elaborated in the paper. Material and methods: The selected knowledge about Legendre polynomials have been taken from the right literature. The analytical method has been used in this paper. Results: Has been shown the theorem describing expanding functions in a series by using Legendre polynomials. It have been shown selected examples of expanding functions in a series by applying Legendre polynomials. Conclusion: The function f(z) can be expand in the interval ‹-1,1› in a series according to Legendre polynomials where the unknown coefficients can be determined using the method of undetermined coefficients.
PL
Wstęp i cel: W pracy pokazuje się wybrane podstawowe wiadomości o wielomianach Legendre’a. W artykule opracowano algorytm rozwijania funkcji w szereg według wielomianów Legendre’a. Materiał i metody: Wybrane wiadomości o wielomianach Legendre’a zaczerpnięto z literatury przedmiotu. W pracy zastosowano metodę analityczną. Wyniki: W pracy pokazano twierdzenie dotyczące rozwijania funkcji w szereg według wielomianów Legendre’a. Pokazano wybrane przykłady rozwijania funkcji w szereg według wielomianów Legendre’a Wniosek: Funkcja f(z) może być w przedziale ‹-1,1› rozwinięta w szereg według wielomianów Legendre’a, gdzie nieznane współczynniki można wyznaczyć stosując metodę współczynników nieoznaczonych.
3
Content available Orthogonality of Legendre polynomials
EN
Introduction and aim: The paper presents some Legendre polynomials, orthogonality condition for Legendre polynomials, recurrence formula and differential equation for Legendre polynomials. The aim of the discussion was to give some proof of orthogonality of Legendre polynomial system. Material and methods: Selected material based on some knowledge about Legendre polynomials which has been obtained from the right literature. The proof of the theorem describing the orthogonality of Legendre polynomials has been elaborated using a deduction method. Results: Has been shown some proof of the theorem describing the orthogonality of Legendre polynomials. It has been shown an example of orthogonality testing a pair of two arbitrary Legendre polynomials. Conclusions: In the paper has been shown the proof for theorem: The system of Legendre polynomials is orthogonal in the interval <-1,1> with the weighting function p(z)=1 .
PL
Wstęp i cel: W pracy przedstawiono wielomiany Legendre’a, warunek ortogonalności dla układu tych wielomianów, funkcję tworzącą oraz równanie różniczkowe dla wielomianów Legendre’a. Celem rozważań było przeprowadzenie dowodu twierdzenia o ortogonalności układów wielomianów Legenre’a. Materiał i metody: Materiał stanowiły wybrane wiadomości o wielomianach Legendre’a uzyskane z literatury przedmiotu. W przeprowadzonym dowodzie zastosowano metodę dedukcji. Wyniki: Pokazano dowód twierdzenia o ortogonalności układów wielomianów Legenre’a. Podano przykład badania ortogonalności pary dwóch dowolnych wielomianów Legendre’a. Wniosek: W pracy przeprowadzono dowód twierdzenia: Układ wielomianów Legendre’a jest ortogonalny w przedziale ,<-1,1> z wagą p(z)=1.
PL
W pracy przedstawiono związek rekurencyjny, zależności różniczkowe i równanie różniczkowe dla wielomianów Legendre’a. Celem rozważań było przeprowadzenie dowodów omawianych własności. Materiał i metody: Materiał stanowiły wybrane zależności rekurencyjne i równanie różniczkowe uzyskane z literatury przedmiotu. W przeprowadzonych dowodach zastosowano metodę dedukcji. Wyniki: Pokazano dowód twierdzenia o funkcji tworzącej dla wielomianów Legendre’a stosując metodę residuum funkcji. Przeprowadzono dowód związku rekurencyjnego, czterech zależności różniczkowych oraz równania różniczkowego dla wielomianów Legendre’a. Wnioski: Pochodną wielomianu Legendre’a wyrażoną przez wielomiany Legendre’a można określić z równania (1–z2)P'n(z) = nPn-1(z) – nzPn(z) dla n = 1, 2, … . Wielomian Legendre’a u=Pn(z) jest całką szczególną równania [(1-z2)u']'+n(n+1)u =0 dla n = 0, 1, 2,
EN
Introduction and aim: The paper presents a recurrence formula, some differential compounds and differential equation for Legendre polynomials. The aim of the discussion was to give some proofs of presented dependences. Material and methods: Selected material based on a recurrence formula, some differential compounds and differential equation has been obtained from the right literature. In presented proofs of theorems was used a deduction method. Results: Has been shown some proof of the theorem of the generating function for Legendre polynomials by using the method of function residue. It has been done the proof of recurrence formula, some proofs of four differential compounds and differential equation for Legendre polynomials. Conclusions: Some derivative of Legendre polynomial expressed by Legendre polynomials can be determined from the equation (1–z2)P'n(z) = nPn-1(z) – nzPn(z) for n = 1, 2, … . Legendre polynomial u=Pn(z) is the particular integral solution of the equation [(1-z2)u']'+n(n+1)u =0 for n = 0, 1, 2, … .
EN
The paper deals with synthesis of the quadratic near-optimal closed-loop control of electric DC drive system with inequality constraints imposed on the control signal and on state-vector's components. The system is subject to the known deterministic disturbance (the external torque on motor's shaft). For such drive system the near-optimal, open-loop control was by application of Legendre polynomials method. On the basis of that the synthesis procedure of near-optimal, closed-loop, control system was presented. The application of such procedure was demonstrated by numerical example.
PL
W pracy przedstawiono sposób syntezy zamkniętego układu sterowania bliskiego optymalnemu z kwadratowym wskaźnikiem jakości dla napędu elektrycznego prądu stałego z ograniczeniami nierównościowymi nałożonymi na sygnał sterujący i na składowe wektora stanu. Na układ działa znane zdeterminowane zakłócenie (moment zewnętrzny na wale silnika). Przy zastosowaniu metody wielomianów Legendre'a wyznaczono sterowanie bliskie optymalnemu realizowane w systemie otwartym. Na podstawie tych wyników podano sposób syntezy bliskiego optymalnemu układu sterowania w systemie zamkniętym.
EN
The paper deals with the quadratic optimal control for the electric DC-drive, subject to the known, deterministic, external disturbance. For safety reasons the constraints are imposed on the supplying voltage, on the armature current and on the motor's angular velocity. The classical theory of the linear quadratic optimal control problem, concerning the undisturbed and unconstrained systems is not valid for the considered drive. By application of Legendre polynomials method the approximate, near-optimal control was found.
PL
W pracy przedstawiono zagadnienie sterowania optymalnego z kwadratowym wskaźnikiem jakości dla ukłądu napędu elektrycznego prądu stałego, poddanego działaniu znanego, zdeterminowanego zakłócenia zewnętrznego. Ze względów bezpieczeństwa zostały nałożone ograniczenia na napięcie zasilające, na prąd twornika oraz na prędkość kątową wału silniku. Klasyczna teoria sterowania optymalnego z kwadratowym wskaźnikiem jakości, dotycząca układów liniowych bez ograniczeń i nie poddanych działaniu zakłóceń, nie może być wykorzystana w przypadku rozpatrywanego napędu. Dzięki zastosowaniu metody wielomianów Legenfre'a uzyskano przybliżone, bliskie optymalnemu rozwiązanie.
EN
We show a connection between the polynomials whose inflection points coincide with their interior roots (let us write shorter PIPCIR), Legendre polynomials, and Jacobi polynomials, and study some properties of PIPCIRs (Part I). In addition, we give new formulas for some classical orthogonal polynomials. Then we use PIPCIRs to solve some partial differential equations (Part II).
EN
The paper deals with application of shifted Legendre polynomials in the time-optimal control problem for a linear, time invariant, undisturbed, single-input system. It was assumed that the normality condition of the time-optimal control is satisfied, the state matrix is nonsingular, and all its eigenvalues are real nonpositive. The method of evaluating the approximate swiching instants of the bang-bang control is presented. The proposed computational procedure is based on the solution of algebraic matrix equation, which corresponds to the differential state equation, and was obtained according to the propertyies of Legendre polynomials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.