Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 23

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zagospodarowanie wód opadowych
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
Na terenach zlewni zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, coraz częściej stosuje się zrównoważone systemy drenażu (ZSD, ang. SUDS - Sustainable Urban Drainage Systems), które umożliwiają zagospodarowanie wód opadowych możliwie jak najbliżej miejsca wystąpienia opadu. Jednym z przykładów takich rozwiązań są zielone dachy. W artykule zaprezentowano wyniki badań zdolności retencyjnych sześciu modeli zielonych dachów, oznaczonych w tekście artykułu symbolami: SHR1, SHR2, SHR3, SH, S i SR. W przypadku modeli SHR1, SHR2, SHR3 i SH zastosowano dwie warstwy substratu ekstensywnego o nazwie handlowej „Skalny kobierzec”. Dolna warstwa substratu zawierała domieszkę 0,5 % wag. hydrożelu potasowego (usieciowanego poliakrylanu potasu), natomiast górną warstwę stanowił ww. substrat bez domieszek. W przypadku modeli SHR1, SHR2, SHR3 zastosowano warstwę roślinności - rozchodnik ostry (Sedum Acre), natomiast model SH nie zawierał warstwy roślinności. Z kolei w przypadku modeli S i SR zastosowano jednolitą warstwę substratu ekstensywnego „Skalny kobierzec” bez dodatku hydrożelu, przy czym model SR posiadał warstwę roślinności (rozchodnik ostry), a model S był pozbawiony roślin. Modele SHR1 i SHR2 zostały skonstruowane w marcu 2017 r., modele SH i SHR3 w listopadzie 2017 r., a modele S i SR w kwietniu 2018 r. Badania były prowadzone z zastosowaniem opadów naturalnych oraz sztucznych (symulowanych). Na podstawie otrzymanych wyników można stwierdzić, że zastosowanie zielonych dachów może pozwolić na zmniejszenie natężenia odpływu wody opadowej ze zlewni. Uzyskane wyniki wskazują, że w większości przypadków najlepsze zdolności retencyjne wykazywały modele zielonych dachów obsadzone dobrze ukorzenioną, gęstą warstwą roślinności, które równocześnie zawierały substrat z domieszką hydrożelu (SHR1, SHR2). W niewielkim stopniu niższą zdolnością retencyjną charakteryzował się model o bardzo zbliżonej konstrukcji (SHR3), posiadający rzadszą i słabiej ukorzenioną warstwę roślinności. W większości przypadków mniejsze objętości wody były retencjonowane w warstwach pozostałych modeli: S (niezawierającego roślin ani domieszki hydrożelu), SR (zawierającego roślinność, ale niezawierającego hydrożelu) i SH (zawierającego domieszkę hydrożelu, lecz nieposiadającego warstwy roślinności). Otrzymane wyniki wskazują, że dodatek hydrożelu może wpływać pozytywnie na zdolności retencyjne dachów obsadzonych roślinnością, pod warunkiem, że okres bezdeszczowy poprzedzający opad nie będzie bardzo krótki i dach częściowo odzyska zdolność do retencjonowania wody. Na podstawie uzyskanych wyników można stwierdzić, że dodatek hydrożelu do substratu w przypadku modelu pozbawionego roślinności nie powodował znaczącego zwiększenia jego zdolności retencyjnych. Otrzymane wyniki wskazują, że dużą rolę w retencjonowaniu wody opadowej odgrywa warstwa roślinności, zwłaszcza w okresie późnej wiosny i lata, kiedy panują stosunkowo wysokie temperatury.
EN
In urbanized areas, in addition to the traditional sewer systems, increasingly are used the sustainable urban drainage systems (SUDS), inter alia, the green roofs. The focus of the research described in the article was to investigate the retention capacities of six green roof models denoted in the paper by symbols: SHR1, SHR2, SHR3, SH, S, and SR. The models were constructed with use of the plastic garden trays (with internal dimensions 55.7 × 55.7 × 7 cm). On the bottom of each tray the drainage element Floradrain FD 25 was placed. On each drainage element the filter sheet SF (70 × 70 cm) was spread. On the surface of each filter sheet the required amount of the specified substrate was placed. The total thickness of substrate layer on each model was equal. Models SHR1, SHR2, SHR3, SH were built of two layers of the extensive substrate “Sedum Carpet”. The lower layer contained the admixture of 0.5 % by weight of hydrogel (the cross-linked potassium polyacrylate). The upper layer consisted of the substrate “Sedum Carpet” without hydrogel amendment. Models SHR1, SHR2, and SHR3 contained the layer of vegetation - the goldmoss stonecrop (Sedum Acre), while model SH did not contain the plants. The models S and SR contained the uniform layer of extensive substrate “Sedum Carpet” without hydrogel amendment. The model SR contained the vegetation (the goldmoss stonecrop) and S did not contain plants. Models SHR1 and SHR2 were constructed in March 2017, models SH and SHR3 were constructed in November 2017, and models S and SR were constructed in April 2018. The investigations were conducted with use of natural and artificial (simulated) precipitations. The obtained results show that the green roofs can help to reduce the outflow of rainwater from the catchment. The results indicate that in most cases the best retention capacities had models prepared in March 2017, with dense, well-rooted plants and substrate layer amended with hydrogel (SHR1 and SHR2). The similarly constructed model (SHR3) having a less dense and less rooted vegetation layer had a slightly lower retention capacity. In most cases smaller volumes of water were stored in the layers of other models: S (substrate without hydrogel amendment and without plants), SR (substrate without hydrogel amendment + plants), and SH (substrate with hydrogel amendment and without plants). The obtained results indicate that the addition of hydrogel into the growing medium can have a positive effect on the retention capacity of vegetated roof, provided that the antecedent dry period will not be very short. On the other hand, the results show that the hydrogel amendment did not cause a significant increase in retention capacity in the case of model without plants. The obtained results indicate that the vegetation layer plays an important role in the retention of rainwater, especially in the late spring and summer, when the temperatures were relatively high.
PL
Radom stoi obecnie przed ogromną szansą, jaką jest statut miasta demonstracyjnego w skali Europy, które jako jedno z pierwszych w Polsce wykorzystuje potencjał do nierównej walki z obserwowanymi obecnie skutkami zmian klimatycznych. Jakie działania w zakresie zrównoważonego zagospodarowania wód opadowych i tzw. błękitno-zielonej infrastruktury już zrealizowano? I jakie są efekty?
PL
Zagospodarowanie wód opadowych i roztopowych bywa zmorą wielu zakładów przemysłowych, w szczególności w trakcie nawalnego deszczu. Wbrew pozorom problem ten nie sprowadza się wyłącznie do kwestii technicznych związanych ze sprawnym odprowadzaniem dużej ilości deszczówki.
PL
Na terenach zlewni zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, coraz częściej stosowane są zrównoważone systemy drenażu (ZSD, ang. SUDS - Sustainable Urban Drainage Systems), umożliwiające zagospodarowanie wód opadowych w miejscu wystąpienia opadu. Jednym z takich rozwiązań są zielone dachy. Artykuł prezentuje wstępne wyniki badań zdolności retencyjnych czterech modeli zielonych dachów. W przypadku modelu 1 zastosowano substrat dachowy ekstensywny bez domieszek. Modele 2 i 3 zawierały substrat ekstensywny z domieszką hydrożelu potasowego (usieciowanego poliakrylanu potasu). W przypadku modelu 2 dodatkowo zastosowano warstwę roślinności (rozchodnik ostry Sedum Acre). W modelu 4 zastosowano substrat ekstensywny z wkładkami z agrowłókniny wypełnionymi hydrożelem potasowym. Modele dachów 2, 3 i 4 zawierały taką samą dawkę hydrożelu (30 g). Badania były prowadzone w warunkach terenowych, w dwóch etapach. Wstępny etap obejmował pierwsze nasączenie modeli (wszystkie elementy w stanie powietrzno suchym) przy zastosowaniu opadu symulowanego. Drugi etap obejmował dalsze badania zdolności retencyjnych modeli, głównie z wykorzystaniem opadów naturalnych. Otrzymane wyniki wskazują, że podczas pierwszego, symulowanego opadu najlepsze zdolności retencyjne wykazywały modele 2 i 3 (z domieszką hydrożelu w stanie luźnym), natomiast najmniejsza objętość wody została zretencjonowana przez modele 1 (bez domieszki hydrożelu) i 4 (z wkładkami zawierającymi hydrożel). Wyniki drugiego etapu eksperymentu są zróżnicowane. W przypadku trzech analizowanych opadów naturalnych najlepsze zdolności retencyjne wykazywał model 2 z substratem zawierającym domieszkę hydrożelu, obsadzony roślinnością, ale w przypadku dwóch opadów większa objętość wody została zretencjonowana w warstwach modelu 4 z wkładkami z hydrożelu. Najsłabsze zdolności retencyjne, spośród modeli zawierających hydrożel w składzie substratu, wykazywał model 3 z hydrożelem w stanie luźnym, nieobsadzony roślinnością. Uzyskane wyniki wskazują na odmienne zachowanie się dodatku hydrożelu i inny przebieg cyklu pochłaniania i oddawania wody w zależności od tego, czy superabsorbent jest zastosowany w formie luźnej domieszki czy umieszczony we wkładkach. W celu dokładniejszego zbadania zachowania hydrożelu w substracie konieczne jest kontynuowanie badań, mających na celu określenie wpływu temperatury i wilgotności powietrza oraz warstwy roślinności na zachowanie dodatku hydrożelu.
EN
In urbanized areas, in addition to the traditional sewer systems, increasingly are used the sustainable urban drainage systems (SUDS), inter alia, the green roofs. The article presents the results of research of retention capacities of 4 green roof models. In these models were used: in model 1 - the typical extensive substrate, in models 2 and 3 - the above-mentioned extensive substrate with addition of hydrogel (cross-linked polyacrylate potassium), in model 4 - agrotextile inserts with hydrogel. Model 2 additionally contained the plants (Goldmoss Stonecrop Sedum Acre). Models 2, 3 and 4 contained the same portion of hydrogel (30 g). The field experiments were conducted in two stages under natural atmospheric conditions. The initial stage included the first simulated precipitation (all layers of green roof models were air-dry during these experiments). The second stage included the further investigations of the retention capacities of green roof models, predominantly with use of natural precipitations. The obtained results of initial stage of experiments show that during the first simulated precipitation the best retention capacities had models 2 and 3 (with hydrogel admixtures). The least amount of water was absorbed in model 1 (without hydrogel additive) and model 4 (containing agrotextile inserts with hydrogel). The results of the second stage of the experiment are equivocal. In the case of three natural precipitations, the best retention capacity was demonstrated by model 2, with the substrate containing hydrogel admixture planted with vegetation, but in the case of two rainfalls more water was stored in model 4, with hydrogel inserts. The least amount of water was absorbed in model 3, with hydrogel admixture, not planted with vegetation. The results show the different behavior of hydrogel and the differences in wetting-drying cycle, depending on whether the superabsorbent is used in the form of a loose admixture or placed in the inserts. Further research is needed to evaluate of influence of temperature and humidity and the presence of vegetation on behavior of hydrogel additive in the green roof substrate.
PL
Ciągle postępujące uszczelnianie powierzchni terenu zlewni zurbanizowanych przyczynia się do zwiększania natężenia spływu powierzchniowego podczas intensywnych opadów, co prowadzi do wzrostu zagrożenia powodziowego. W związku z tym na terenach silnie zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, powinny być stosowane zrównoważone systemy drenażu (SUDS - Sustainable Urban Drainage Systems). O ile to możliwe, należy dążyć do zagospodarowania wody opadowej bezpośrednio w miejscu wystąpienia opadu, co może być umożliwione między innymi przez zastosowanie zielonych dachów. Artykuł przedstawia wyniki badań zdolności retencyjnych czterech modeli zielonych dachów. W Modelu 1 zastosowano substrat intensywny „Ogród dachowy” bez domieszek. W przypadku modeli 2 i 3 na etapie konstruowania stanowiska zastosowano ww. substrat z domieszkami hydrożelu potasowego (usieciowanego poliakrylanu potasu), odpowiednio wynoszącymi około 1 i 0,25 % wagowych. W przypadku modelu 4 zastosowano ww. substrat, do którego dodano domieszki keramzytu i perlitu ogrodniczego. W modelach nie zastosowano roślinności, aby badaniu poddać wyłącznie zastosowane substraty. Symulacje opadów prowadzono po zróżnicowanych okresach bezopadowych wynoszących odpowiednio: 3, 4, 5, 7, 11 i 16 dni. Uzyskane wyniki wskazują, że po krótszych okresach bezopadowych (wynoszących od 3 do 7 dni) najlepsze zdolności retencyjne wykazywał model dachu 2 z substratem zawierającym dodatek ok. 1 % wag. hydrożelu. Z kolei w przypadku dłuższych okresów bezopadowych model 2 nie wykazywał już tak dobrych zdolności retencyjnych. W trakcie opadów symulowanych po 11 i 16 dniach bezopadowych najlepsze zdolności retencyjne wykazywały modele 1 i 3 (odpowiednio z substratem bez żadnych dodatków i z dodatkiem ok. 0,25 % wag. hydrożelu). Najsłabsze zdolności retencyjne wykazywał model 4 - z substratem zawierającym domieszki keramzytu i perlitu ogrodniczego.
EN
Persistent sealing of drainage basin surface in urbanized areas prompts the rise of runoff intensity during heavy rains. This leads to an increase of threat of flood. In this regard, in addition to the traditional sewer systems should be used the Sustainable Urban Drainage Systems (SUDS). SUDS comprise, inter alia, managing the rain close to where it falls. The examples of SUDS can be green roofs. The article presents the results of research of retention capacities of 4 green roof models. As the growing media in the green roof models were used following substrates: in model 1 - the typical intensive substrate (“Roof Garden”), in model 2 - the same substrate with admixture of about 1 % by weight of hydrogel (cross-linked potassium polyacrylate), in model 3 - the same substrate with admixture of 0.25 % by weight of hydrogel, and in model 4 - the a.m. substrate with admixture of expanded clay and perlite. There are not the vegetation layers on the models because the focus of the experiments was to investigate of the retention capacities solely of the substrates. The artificial precipitations were simulated after: 3, 4, 5, 7, 11, and 16 antecedent dry days. The results indicate that during the precipitations that occurred after shorter antecedent dry periods (from 3 to 7 days) the best retention capacities had model 2 containing the substrate with admixture of about 1 % by weight of hydrogel. By contrast, during the precipitations that occurred after longer antecedent dry periods (11 or 16 days) the best retention capacities had models 1 and 3 (with substrate without any admixtures and with substrate containing about 0.25 % by weight of hydrogel). Results show that the weakest retention capacity had model 4 - with substrate containing admixtures of expanded clay and perlite. It should be pointed out that the effectiveness of hydrogel decreased compared to results obtained during the earlier studies.
PL
Zastosowanie dynamicznych symulacji umożliwiających ocenę funkcjonowania sieci kanalizacyjnej staje się coraz powszechniej wykorzystywanym narzędziem w pracy inżynierów, zajmujących się zagadnieniami gospodarki wodno-ściekowej w miastach. Te techniki komputerowe wykorzystywane są do analiz oraz prognozowania różnych sytuacji mogących pojawiać się w trakcie eksploatacji kanalizacji. Symulacje komputerowe umożliwiają analizę różnych wariantów kształtowania się wielkości spływów powierzchniowych przy różnych warunkach zjawisk pogodowych i retencji powierzchni jak również zastosowania urządzeń do retencji lub infiltracji wód opadowych. Urządzenia do lokalnego zagospodarowania wód opadowych, zaliczane do obiektów typu LID (Low Impact Development) pozwalają zmniejszyć wpływ wód opadowych na odbiorniki. Celem pracy było wykazanie celowości wykorzystania symulacji spływu z wybranej zlewni z zastosowaniem oprogramowania pozwalającego na przeprowadzenie obliczeń hydrogramów odpływu w punktach kontrolnych kanalizacji deszczowej dla określenia wpływu urządzeń do bioretencji na dynamikę odpływu ścieków deszczowych odprowadzonych siecią kanalizacyjną. W pracy wykorzystano wyniki z kampanii pomiarowych wykonanych we Wrocławiu, w rejonie analizowanej zlewni. Wykazano, że zastosowanie modeli hydrodynamicznych wspomaga ocenę wpływu obiektów LID na funkcjonowanie kanalizacji deszczowej.
EN
The application of dynamic simulations that enable to evaluate the operation of drainage networks is becoming an increas- ingly popular tool used in the work of engineers who deal with water and wastewater management issues in urban areas. These IT solutions are used for the purposes of analysing and forecasting various situations that might occur during the operation of the network. Computer simulations enable to analyse different variants of surface runoff volumes at various weather conditions and surface retention as well as to apply rainwater retention or infiltration facilities. Local rainwater management systems that belong to LID (Low Impact Development) facilities allow to reduce the influence of rainwater on the receiver. The aim of the study was to demonstrate the advisability to use the simulation of runoff from a selected catchment sup- ported by software that enables to calculate the runoff hydrograph at rainwater drainage system control points in order to determine the influence of bioretention facilities on the dynamics of stormwater runoff discharged through sewage network. The research was based on the results obtained from measurement campaigns conducted in Wrocław, in the area of the analysed catchment. It was demonstrated that the application of hydrodynamic models supports the evaluation of the influence of LID facilities on the operation of rainwater drainage systems.
PL
Zmiany wielkości opadów w połączeniu z rosnącą urbanizacją prowadzą nieuchronnie do wieu wyzwań w gospodarce wodami odpadowymi, ze szczególnym uwzględnieniem terenów zurbanizowanych
PL
Przedstawiono zagadnienia związane z funkcjonowaniem systemów zagospodarowania wody opadowej w szczególnych warunkach. Znajomość zjawisk meteorologicznych jest nadal niewystarczająca dla potrzeb rozwiązywania systemów. Wszystkie oceny mają charakter dość ogólnych założeń. W praktyce konieczne jest posługiwanie się w Polsce wzorami empirycznymi. Od ponad 20 lat systematycznie spotykamy się ze zjawiskami wykraczającymi poza tradycyjne granice. Niezależnie od tego istniejące rozwiązania powinny zapewniać użytkownikom minimalny poziom komfortu oraz nie stwarzać zagrożeń. Istniejące problemy przedstawiono na przykładzie funkcjonowania Gdańskiego systemu wodnego. Wykazano, że aczkolwiek znajomość historii jest bardzo ważna to jednak nie powinna być ona traktowana jako fetysz. Wskazano błędy planowania zagospodarowania przestrzeni. Podano założenia programu planowania wieloletniego rozwoju systemu zagospodarowania wód opadowych w mieście Bydgoszczy. Program bydgoski jest pierwszą w Polsce próbą racjonalnego podejścia do zagadnienia.
EN
The issues related to the functioning of rainwater management systems in particular conditions were presented. Knowledge of meteorological phenomena is still insufficient for needs of solving systems. All evaluations are of a fairly general nature. In practice, it is necessary to use empirical models in Poland. For more than 20 years, we have systematically encountered phenomena beyond traditional boundaries. Regardless of this, existing solutions should provide users with minimum comfort level and no hazards. Existing problems are illustrated by the functioning of the city Gdańsk water system. It has been shown that although knowledge of history is very important, however, it should not be regarded as a fetish. Errors of the land development planning are indicated. The assumptions of the program of long-term planning of the rainwater management system in the city of Bydgoszcz are presented. The Bydgoszcz program is Poland’s first attempt at a rational approach to the issue.
PL
Niniejszy artykuł podejmuje kwestię zagospodarowania wody opadowej, traktując ją jako czynnik wzmacniający odporność obszarów miejskich na zmiany klimatyczne. Gęsta zabudowa, nadmierne uszczelnienie gruntów, powodzie i susze, niedostateczna dbałość o zieloną infrastrukturę, niosą za sobą tak niekorzystne zjawiska jak pogorszenie mikroklimatu, susze i powodzie miejskie (brak lub nadmiar wody), zubożenie bioróżnorodności biologicznej oraz wzrost zachorowalności wśród ludzi. Aby przeciwdziałać tym globalnym procesom, przeciwstawia się ideę sektorowych (wycinkowych) działań, systemowej integracji wielu środowisk naukowo-inżynieryjnych. Katalog przykładowych rozwiązań opartych o ekohydrologię zaprezentowany został na obszarze Wyspy Pasieka w Opolu, jako terenie silnie zurbanizowanym, gdzie zaburzone są procesy odpływu wód opadowych, ewapotranspiracji i infiltracji gruntowej, co z kolei przekłada się na niekorzystny mikroklimat i jakość życia mieszkańców. W artykule znajduje się propozycja zagospodarowania tego obszaru w oparciu o analizę błękitno-zielonej infrastruktury, powrót do naturalnych hydro-ekosystemów oraz zwrócenie uwagi na jakość usług ekosystemowych w nawiązaniu do zasad zrównoważonego rozwoju.
EN
The article addresses the issue of management of rainwater, treating it as a factor strengthening the resilience of urban areas to climate change. Dense buildings, excessive seal land, floods and droughts urban, insufficient attention to green infrastructure, involve any such negative processes as deterioration of the microclimate, droughts and floods urban (lack or excess water), depletion of biological biodiversity and increased morbidity among people. To counter this global process, is opposed to the idea of sectoral (fragmented) activities, system integration of many scientific and engineering communities. Product examples of solutions based on ecohydrology was presented in the area of Island Pasieka in Opole, as a highly urbanized area, where the processes are disturbed outflow of rainwater, evapotranspiration and infiltration of groundwater, which in turn translates into a negative climate and quality of life. The article is a proposal of development of this area based on analysis of blue-green infrastructure, a return to natural hydro-ecosystems and to draw attention to the quality of ecosystem services in relation to the principles of sustainable development.
PL
Aktualnie stosowanie urządzeń do miejscowego zagospodarowania wód deszczowych nie powinno mieć na celu jedynie ich zagospodarowania, ale powinno również przyczyniać się do poprawy walorów estetycznych otoczenia. Takie możliwości daje zastosowanie „zielonej infrastruktury”, czyli sposób zagospodarowania wód deszczowych polegający na wykorzystaniu materiałów i metod wspierających powrót do naturalnych funkcji hydrologicznych na obszarach zurbanizowanych. Funkcję takie mogą pełnić na przykład ogrody deszczowe, powierzchnie przepuszczalne, czy zielone dachy. Najlepsze efekty wynikające z zastosowania zielonej infrastruktury można uzyskać poprzez łączenie poszczególnych urządzeń w systemy. Dzięki temu łatwiej osiągnąć widoczne korzyści ekonomiczne i środowiskowe oraz sprostać wymaganiom społeczeństwa wynikającym z jakości przestrzeni miejskiej. Wdrażanie koncepcji zielonej infrastruktury w wielu miastach jest do tej pory nieefektywne, zarówno w postaci obiektów powierzchniowych, jak i podziemnych. Jest to związane między innymi z potrzebą wykorzystania większego obszaru w porównaniu do obiektów szarej infrastruktury, braku wiedzy wśród projektantów, czy braku przykładów w otoczeniu. Odpowiednio skoordynowane działania pozwalają na zachowanie funkcjonalności urządzeń i ich dopasowanie do otoczenia. Efektem jest zadowolenie mieszkańców i użytkowników, co wpływa na pozytywne postrzeganie tego rodzaju obiektów. Ostatecznie inwestycje w zieloną infrastrukturę przestają budzić sprzeciw i stają się pożądanym elementem przestrzeni.
EN
Currently, the use of devices for the local management of stormwater should not be only the aim of its management, but should also contribute to the improvement of the value of aesthetic surroundings. The use of green infrastructure which is the way of stormwater management based on using materials and methods that support a return to the natural hydrological functions in urban areas gives such opportunities. Rain gardens, permeable surfaces, and green roofs can operate in this way. The best effects resulting from the use of green infrastructure can be achieved by combining individual devices in the entire system. Thanks to this combination visible economic and environmental benefits and expectations of society resulting from the quality of urban space can be more easily achieved. The implementation of the green infrastructure idea in many cities has been ineffective so far both in the form of surface facilities and underground ones. It results from the need for using a larger area compared to objects grey infrastructure, the lack of knowledge of designers, or the lack of examples in the surroundings. Suitably coordinated actions allow to keep the functionality of the devices and incorporate them into the surroundings. The result is the satisfaction of residents and users, which affects positively on perception of such objects. Finally, the investments in green infrastructure cease to arouse opposition and become a desirable element of surrounding.
PL
W studialnej koncepcji modernizacji dzielnicy Rataje w Poznaniu zastosowano podejście zlewniowe w celu retencjonowania, podczyszczania i wykorzystania wód opadowych. Kluczową rolę w projekcie odgrywają „modułowe place deszczowe”.
PL
Postępujący rozwój i urbanizacja wpływają na kształtowanie odpływu wód opadowych ze zlewni. Wzrost stopnia uszczelnienia powierzchni powoduje zwiększanie natężenia spływu powierzchniowego, co często przyczynia się do podwyższenia zagrożenia powodziowego. W związku z tym na terenach silnie zurbanizowanych, obok tradycyjnych systemów kanalizacji deszczowej, coraz częściej stosuje się rozwiązania mające na celu zagospodarowanie wód deszczowych w miejscu wystąpienia opadu. Rozwiązania te noszą nazwę zrównoważonych systemów drenażu. Jednym z takich rozwiązań są zielone dachy. W artykule przedstawiono wyniki badań zdolności retencyjnych czterech modeli zielonych dachów, na których zastosowano zróżnicowane substraty dachowe. Jedno podłoże glebowe stanowił tradycyjny substrat dachowy bez domieszek, dwa podłoża stanowiły substraty z domieszkami hydrożelu, odpowiednio wynoszącymi około 1 i 0,25% wagowych. Jako czwarte podłoże zastosowano substrat dachowy z domieszką keramzytu i perlitu ogrodniczego. Na modelach zielonych dachów nie zastosowano roślinności, aby badania dotyczyły wyłącznie zdolności retencyjnych zastosowanych substratów. Pierwsza część eksperymentu opisanego w artykule polegała na badaniu zdolności retencyjnych substratów dachowych podczas pierwszego symulowanego opadu oraz opadu występującego po długim okresie bezdeszczowym (substrat i inne elementy modelu zielonego dachu w stanie powietrzno suchym). W tym przypadku najlepsze zdolności retencyjne wykazał substrat z zawartością ok. 1% hydrożelu. Drugą co do wartości pojemnością retencyjną odznaczał się substrat zawierający ok. 0,25% wag. hydrożelu. Z kolei najsłabsze zdolności retencyjne posiadał substrat z dodatkiem materiałów silnie porowatych (keramzytu i perlitu ogrodniczego). Druga część eksperymentu polegała na badaniu zdolności retencyjnych substratów podczas opadu, jaki wystąpił po okresie bezdeszczowym, wynoszącym 4 doby. Otrzymane wyniki wskazują, że w tym przypadku najlepsze zdolności retencyjne wykazał substrat zawierający ok. 0,25% hydrożelu, drugą co do wartości chłonność posiadał substrat z dodatkiem i keramzytu, i perlitu ogrodniczego, trzecią co do wartości chłonność wykazywał substrat bez żadnych dodatków. Najsłabszą chłonność w tym przypadku posiadał substrat z dodatkiem około 1% hydrożelu.
EN
Progressive economic development and urbanisation influence the characteristics of the stormwater runoff. Persistent sealing of drainage basin surface prompts the rise of runoff intensity. This results in a rise of threat of flood. Therefore, in urbanized areas in addition to the traditional sewer systems are used the ecological sustainable urban drainage systems (SUDS). One of these solutions are the green roofs. The paper presents the results of investigation of retention capacities of 4 green roof models with following substrates: the typical green roof substrate, the substrate with addition of about 1% of hydrogel, the substrate with addition of about 0.25% of hydrogel, the substrate with addition of expanded clay and perlite. In the models weren’t applied the vegetation layers in order to explore only the retention capacities of substrates and drainage layers. The objective of the first part of experiment described in the paper was to investigate the retention capacities of roof substrates during the first rain and the rain that occurred after long antecedent dry period of time (the substrates and drainage layers Badanie wpływu hydrożelu na zdolności retencyjne zielonych dachów 633 were air-dry). The best retention capacity had in this case the substrate with addition of about 1% of hydrogel. The second largest retention capacity had the substrate with addition of about 0.25% of hydrogel. The weakest retention capacity had the substrate with addition of expanded clay and perlite. The objective of second part of experiment was to investigate the retention capacities of green roof substrates after 4 antecedent dry days. In this case the best retention capacity had the substrate with addition of about 0.25% of hydrogel. The second largest retention capacity had the substrate with addition of expanded clay and perlite. The weakest retention capacity had the substrate with addition of about 1% of hydrogel.
PL
W artykule przedstawiono własne doświadczenia autorek, które mogą przybliżyć problemy powstające na etapie projektowania systemów zrównoważonego gospodarowania wodami opadowymi. Wiedza ta może być przydatna dla przyszłych inwestorów – podmiotów fizycznych i prawnych.
EN
Despite the growing need to support work of traditional sanitary sewer by sustainable stormwater systems, there is still reluctance to use these systems in practice. It results from still inadequate knowledge of designing and functioning of these systems as well as from the fear of complications at the stage of agreeing on designing documentation and over interpretation of regulations by the public architectural administrative authorities thus prolonging the time of obtaining permits for starting an investment. There is own experience presented in the paper, which may bring closer the problems arriving at the stage of designing sustainable stormwater systems. This knowledge may be useful for future investors – a single and legal entities.
EN
On account of the previous attitude to urban land use by means of substantial building development and fast rainwater disposal the quantity of rainwater constitute increasing threat in the form of urban flooding. It results in financial loss connected with the removal of damage caused by cellar flooding in residential and office buildings in city centres. Also climate changes reveals appearing more frequent torrential rainfalls cause an increased frequency of flooding events. The local management of rainwater on site of its occurrence gives the possibility of reducing the amount of storm water discharged to the most overloaded storm and combined sewerage system, therefore the potential effects of flooding in urban areas can be reduced. The most important element in reducing the amount of stormwater from relevant area is the reduction of impervious surface in relation to permeable surface. Nowadays, due to land prices in urban areas, available building area is normally used in one hundred percent. At this point, so called alternative ways of rainwater management may be used. Very important for the selection of an appropriate solution for a given catchment area are soil and water conditions, terrain slope, but also the quality of rainwater that can be used for sanitary purposes and the maintenance of green areas. The surface from which rainwater is collected for its re-use can be contaminated with different types of substances. Water drops are already contaminated in the atmosphere by dust suspended in the air. Then, depending on the surface, metals or petroleum substances may get into rainwater, but mainly pollution in the form of suspended solids is observed. Rainwater runoff may require a preliminary treatment before its re-using or introducing into the ground. All of the methods of stormwater treatment should not be overused due to the fact that it increases the cost of equipment, but also this equipment should not cause a negative impact on humans and the environment. The local management of stormwater can be a way to reduce the amount of waste water discharged from the catchment area. It can cause the reduction of consumption of potable water for sanitary purposes. Therefore, the selection of equipment and care to surface, from which rain water is managed, is very important. Without the change of attitude to the management of rainwater the effects of precipitation will become more severe and costly.
PL
Ze względu na dotychczasowe podejście do zagospodarowania terenu poprzez znaczną zabudowę powierzchni i systemy szybkiego odprowadzania wód opadowych z obszarów zurbanizowanych ilość ścieków opadowych stanowi coraz większe zagrożenie objawiające się tzw. powodziami miejskimi. Skutkiem tego są straty materialne związane z usuwaniem szkód wyrządzonych przez np. podtopienia piwnic budynków mieszkalnych czy biurowych w centrach miast. Jednocześnie zmiany klimatu objawiające się coraz częściej występującymi opadami ulewnymi powodują zwiększoną częstotliwość takich zdarzeń. Zagospodarowanie opadu w miejscu jego wystąpienia daje możliwości zmniejszenia ilości odprowadzanych ścieków deszczowych do (najczęściej przeciążonej) sieci kanalizacji deszczowej i ogólnospławnej, zatem zmniejsza ewentualne skutki zalewania obszarów zurbanizowanych. Najważniejszym elementem zmniejszającym ilość ścieków opadowych z danego terenu jest ograniczanie powierzchni przeznaczonej do zabudowy w odniesieniu do powierzchni nieuszczelnionej. Obecnie ze względu na ceny działek na terenach zurbanizowanych dostępna powierzchnia zabudowy zazwyczaj wykorzystywana jest w stu procentach. Znajdują tutaj zatem swoje zastosowanie tzw. alternatywne sposoby zagospodarowania wód opadowych. Bardzo istotne z punktu widzenia doboru odpowiedniego rozwiązania dla danej zlewni są występujące warunki gruntowo-wodne, spadek terenu, ale również jakość zbieranej wody opadowej, która może zostać wykorzystana do celów sanitarnych oraz utrzymania zieleni. Powierzchnie, z których woda opadowa zbierana jest do ponownego wykorzystania, mogą ją zanieczyszczać różnego typu związkami. Już w atmosferze krople wody zostają zanieczyszczone pyłami zawieszonymi w powietrzu. Następnie w zależności od powierzchni mogą być zanieczyszczone metalami lub substancjami ropopochodnymi, głównie jednak zanieczyszczenia występują w postaci zawiesin. Ścieki opadowe mogą wymagać pewnego podczyszczania przed ich ponownym wykorzystaniem lub wprowadzeniem do ziemi. Miejscowe zagospodarowanie wód opadowych powinno w jak najmniejszym stopniu wykorzystywać systemy oczyszczania, żeby nie powodować dodatkowego wzrostu kosztów urządzeń, ale jednocześnie nie wpływać negatywnie na człowieka i środowisko. Miejscowe zagospodarowanie wód opadowych może być sposobem na zmniejszenie ilości ścieków odprowadzanych z obszaru zlewni. Jednocześnie może pozwalać na zmniejszenie ilości zużywanej wody wodociągowej do celów sanitarnych. Istotny jest dobór urządzenia i dbałość o nawierzchnie, z których woda opadowa zostaje zagospodarowana. Bez zmiany podejścia zarządzania wodami opadowymi skutki opadów będą coraz bardziej dotkliwe i kosztowne.
PL
Woda jest prostą kombinacją atomów wodoru i tlenu - H2O - czystą substancją, bezcennym zasobem bez którego życie na Ziemi nie byłoby możliwe. W codziennym życiu jest nam ona niezbędna i często zapominamy o tym jak jest dla nas ważna. O wodzie przypominamy sobie dopiero wtedy, kiedy zaczyna jej brakować, dlatego też musimy zastanowić się jak ją chronić i umiejętnie wykorzystywać.
PL
W artykule omówiono zagrożenia i sposoby ochrony przed powodzią oraz ich wpływ na sposób kształtowania obszarów zurbanizowanych. Na przykładzie strategii rozwoju Rotterdamu Rotterdam Waterstad 2035 zilustrowano zintegrowane podejście do zarządzania ryzykiem powodzi, uwzględniające zagrożenia ze strony morza, rzek i opadów. Głównym celem strategii jest nie tylko kompleksowa ochrona przed powodzią, ale budowanie tożsamości miasta w oparciu o atrakcyjność żywiołu wody. Rewitalizacja nadbrzeży rzeki Mozy oraz unikalny system wodnych placów służących retencji deszczówki mają stworzyć nowy wizerunek Rotterdamu jako wodnego miasta.
EN
The paper describes flood hazards as well as protection methods against them and their impact on the way of urban areas development. An integrated approach to flood risk management, including see, river and rainwater threats, was illustrated on the basis of Rotterdam development strategy called Waterstad 2035. Its main objective is not only a complex flood protection but also creating the identity of the city which is founded on water element attractiveness. The revitalisation of the Meuse River banks along with a unique system of water squares designed for rainwater retention are supposed to create a new image of Rotterdam as a water city.
18
Content available Urządzenie do podczyszczania wód opadowych
PL
Wody opadowe ulegają zanieczyszczeniu już w trakcie opadu w wyniku kontaktu z powietrzem atmosferycznym, wychwytując z niego pyły, produkty niespalonego paliwa, substancje stałe i gazowe oraz inne. W następstwie opadu powstaje spływ powierzchniowy, który ulega dalszemu zanieczyszczeniu. Ilość i rodzaj zanieczyszczeń dostających się do wód deszczowych zależy głównie od rodzaju zlewni i sposobu jej zagospodarowania oraz czasu pomiędzy kolejnymi opadami. W zależności od źródła spływów opadowych pochodzących z osiedli mieszkaniowych, terenów przemysłowych, terenów rolniczych i leśnych wody deszczowe mogą znacznie różnić się stężeniem zanieczyszczeń.
19
Content available Sedymentacyjne koryto odwodnieniowe
PL
Wody opadowe w trakcie spływu po powierzchni terenu unoszą ze sobą znaczne ilości zanieczyszczeń i odpadków. Zasadniczą część z nich stanowią zawiesiny mineralne w postaci pyłów, piasków i żwiru, które można odseparować od wody w prostych procesach osadzania.
PL
Nowoczesne metody zagospodarowania wód opadowych w terenach zurbanizowanych, spełniające wymagania zrównoważonego rozwoju, mają za zadanie ograniczenie negatywnego wpływu na środowisko konwencjonalnych systemów odwodnień, popularnie zwanych "gospodarką końca rury". Jednym ze sposobów odprowadzania wód deszczowych do gruntu jest ich rozsączanie przez układy polipropylenowych skrzynek perforowanych o dużym udziale otworów w ich powierzchni. Jak wynika z przeprowadzonych analiz, ukształtowanie przestrzenne zespołu skrzynek ma decydujący wpływ na wymaganą ich liczbę, okres eksploatacji systemu i dynamikę procesu kolmatacji urządzenia.
EN
The task of modern methods of rain waters management in urbanised areas, fulfilling the requirements of sustainable development, is to mitigate the negative influence of traditional drainage systems, widely known as „end-of-the-pipe management", on the environment. One of the methods of rain waters drainage to the ground is their infiltration through a system of polypropylene perforated boxes with large number of openings. As the conducted analyses indicate, the spatial configuration of the complex of boxes has a decisive influence on their number, the time of system exploitation and the dynamics of their alluviation process.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.