Background: This paper explains the concept of the Industrial Internet of Things (IIoT) and highlights the benefits of its adoption. The purpose of the study was to identify and evaluate practices and approaches of organisations toward the implementation of IIoT solutions in the packaging industry in Poland. Methods: The results are based on non-sensitive quantitative data collected with the use of a survey questionnaire method and CATI (Computer Assisted Telephone Interview) as a data collection technique. Participants completed anonymous survey questionnaires, with responses analysed collectively without the identification of individuals. No continuous tracking or observation methods were used, and the data did not include personal information such as health, genetics, beliefs, or political views. Results: The results reveal that companies within this industry are not early adopters of IIoT, but they are rather digitally immature, with a poor degree of IIoT implementation, poor degree of quality systems digitisation, and no plan towards transformation to enterprise systems such as MRP, ERP, or CRM. The application of IIoT has potential for improvement. The paper outlines the analysis of organisational culture in terms of supporting innovation and continuous improvement, showing that the level of support is moderate, however, the bigger company is, the more supporting the organisational culture it has. Conclusions: Data reveal that the application of IIoT solutions in the packaging industry in Poland is still not very common. Poor adoption of IIoT may be related to fear of technology, budgetary issues, or lack of qualified staff. Although digitisation already changed the software and the hardware side of organisations, most of them are not digitally mature enough to be able to take advantage of the fourth industrial revolution, which can be a strategic advantage for early adopters.
The requirements of Industry 4.0 determine the necessity to change thinking in the field of production development, adopted management methods and modernisation of production resources. When planning the implementation of a new production system (or retrofit), it is possible to use the RAMI 4.0 reference model, which was published in April 2015 by the VDI/VDE Society Measurement and Automatic Control. A key aspect of modern industrial systems is connectivity and trouble-free data exchange. In the case of data exchange, the basic element holding back the development of Industry 4.0 is the lack of standardisation, as well as the lack of interoperability between IIoT network nodes. Modern IIoT applications require high network throughput, low latency and reliability. In view of such guidelines, efficient communication standards and specialised equipment are required. Edge Computing is one of the most important technology trends of the 21st century that will play a key role in the IIoT market. Due to the diversity of available technologies and solutions, no universal standards have been developed to date that can be referred to when planning, building and implementing new applications. The article presents an overview of the most popular industrial communication protocols and their systematisation in terms of meet the requirements for IIoT devices.
W artykule przedstawiono rezultaty projektu illuMINEation „Przemysłowa platforma IoT gwarantująca bezpieczne, zrównoważone i wydajne wydobycie” („Bright concepts for a safe & sustainable digital mining future”), realizowanego w ramach programu Horyzont 2020 (Grant Agreement No. 869379). W projekcie tym postawiono sobie za cel stworzenie rozwiązań podnoszących bezpieczeństwo oraz efektywność procesów produkcji w górnictwie. Aby zrealizować te postanowienia, stworzono szereg rozwiązań zarówno sprzętowych, jak i algorytmów oraz oprogramowania. Projekty sprzętowe mają formę samodzielnych urządzeń i elementów zabudowywanych na maszynach górniczych, natomiast programowe mogą być samodzielną platformą IIoT, jak i algorytmami do zaimplementowania w obrębie istniejącej infrastruktury IT.
EN
The article presents the outcomes of the illuMINEation project "Bright concepts for a safe & sustainable digital mining future”, funded within the Horizon 2020 Programme (Grant Agreement No. 869379). This project aimed to create solutions that increase the safety and efficiency of production processes in mining. To implement these provisions, a number of hardware, software, and algorithm solutions were created. Hardware results take the form of stand-alone devices and elements built onto mining machines, while software projects may be stand-alone IIoT platform or algorithms to be implemented within the existing IT infrastructure.
Industrial Internet of Things (IIoT) is a rapidly growing field, where interconnected devices and systems are used to improve operational efficiency and productivity. However, the extensive connectivity and data exchange in the IIoT environment make it vulnerable to cyberattacks. Intrusion detection systems (IDS) are used to monitor IIoT networks and identify potential security breaches. Feature selection is an essential step in the IDS process, as it can reduce computational complexity and improve the accuracy of the system. In this research paper, we propose a hybrid feature selection approach for intrusion detection in the IIoT environment using Shapley values and a genetic algorithm-based automated preprocessing technique which has three automated steps including imputation, scaling and feature selection. Shapley values are used to evaluate the importance of features, while the genetic algorithm-based automated preprocessing technique optimizes feature selection. We evaluate the proposed approach on a publicly available dataset and compare its performance with existing state-of-the-art methods. The experimental results demonstrate that the proposed approach outperforms existing methods, achieving high accuracy, precision, recall, and F1-score. The proposed approach has the potential to enhance the performance of IDS in the IIoT environment and improve the overall security of critical industrial systems.
Blockchain-based cyber-physical systems (CPSs) and the blockchain Internet of things (BIoT) are two major focuses of the modern technological revolution. Currently we have security attacks like distributed denial-of-service (DDoS), address resolution protocol (ARP) spoofing attacks, various phishing and configuration threats, network congestion, etc. on the existing CPS and IoT architectures. This study conducts a complete survey on the flaws of the present centralized IoT system’s peer-to-peer (P2P) communication and the CPS architecture’s machine-to-machine (M2M) communication. Both these architectures could use the inherent consensus algorithms and cryptographic advantages of blockchain technology. To show how blockchain technology can resolve the flaws of the existing CPS and IoT architectures while maintaining confidentiality, integrity, and availability (the CIA triad), we conduct a holistic survey here on this topic and discuss the research focus in the domain of the BIoT. Then we analyse the similarities and dissimilarities of blockchain technology in IoT and CPS architectures. Finally, it is well understood that one should explore whether blockchain technology will give advantages to CPS and IoT applications through a decision support system (DSS) with a relevant mathematical model, so here we provide the DSS with such a model for this purpose.
Struktury i funkcje instalacji inteligentnych w budynkach decydują o zakresie funkcjonalności instalacji ich wyposażenia technicznego. Obiekty budowlane coraz częściej są zasilane z inteligentnej sieci zasilającej niskiego napięcia. Uwzględnienie zasilania budynku prosumenta z mikrosieci narzuca pewne wymagania dotyczące systemów monitorowania obciążenia instalacji budynkowych (elektrycznych, HVAC) oraz ich ekonomicznego sterowania wspomaganego przez układy integrujące zarządzanie pobieraną/oddawaną do sieci energią elektryczną i ewentualnie magazynowaną energią cieplną. Pewne właściwości integratora instalacji technicznych budynku udostępniane są przez chmurę (przez Wi-Fi oraz sieć Internetu 4G i 5G) i związane z tym funkcje realizowane przez BIoT (Building Internet of Things) i IIoT (Industry Internet of Things).
EN
The structures and functions of inteligent installations in buildings determine the functional scope of their technical equipment. Building facilities are increasingly being supplied from a low-voltage smart grid. Taking into account the power supply of the prosumer’s building from the micro-grid imposes certain requirements on the load monitoring systems of the building installations (electrical and HVAC) and their economic control supported by systems integrating the management of the electrical energy input/output and possibly of the thermal energy stored. Certain features of the building technical systems integrator are made available by the „Cloud” (via WiFi and the 4G and 5G Internet network) and the related functionalities implemented/realised by BIoT (Building Internet of Things) and IIoT (Industry Internet of Things).
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Pneumatyka nie bez powodu zawsze była często wybieranym rozwiązaniem w zastosowaniach w przemyśle spożywczym i napojowym. Systemy pneumatyczne są niezawodne, bezpieczne i łatwe w konserwacji. Łączą w sobie cechy konstrukcyjne, które poprawiają wydajność i potencjalnie obniżają koszty.
Standard IEEE 802.15.4-TSCH (ang. Time Slotted Channel Hopping) definiuje warstwę fizyczną oraz warstwę łącza dla sieci LLN (ang. Low Power and Lossy Network) dopasowaną do rozwiązań IIoT (ang. Industrial Internet of Things). Powstający na jego bazie standard 6TiSCH (ang. IPv6 over TSCH), integrując się z klasycznym stosem internetowym, staje się funkcjonalnym rozwiązaniem dla przemysłowych sieci sensorowych. W artykule zaprezentowano model opisujący zużycie energii węzłów w sieci 6TiSCH, zaadaptowanej do pracy w paśmie 863-870 MHz. Model opiera się na danych pomiarowych pochodzących z implementacji stosu na autorskich modułach radiowych.
EN
IEEE 802.15.4-TSCH (Time Slotted Channel Hopping) standard defines the physical and link layer for LLNs (Low power and Lossy Network) suitable for IIoT (Industrial Internet of Things) solutions. The 6TiSCH (IPv6 over TSCH) standard created on its basis, that integrates with a classical Internet stack, becomes a functional solution for industrial wireless sensor networks. This article presents an energy consumption model for the 6TiSCH network nodes, operating in the 863-870 MHz band, based on measurements taken with an implementation of the stack on custom radio modules.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono najważniejsze cechy standardu IEEE 802.15.4-TSCH oraz opisano metodę adaptacji stosu komunikacyjnego, tworzonego przez grupę roboczą IETF 6TiSCH do wymagań środowiska przemysłowego w paśmie sub-GHz. Przedstawiono również dwa rodzaje modułów radiowych dopasowanych do różnych aplikacji, które mogą być zastosowane w monitorowaniu procesów produkcyjnych i zużycia mediów, oraz budowę toru radiowego pozwalającą na spełnienie rygorystycznych wymagań kategorii 1 wg ETSI.
EN
The article presents the key characteristics of IEEE 802.15.4-TSCH standard, and adaptation of IETF 6TiSCH network stack to the industrial requirements in sub-GHz bands. The article also presents two radio modules suited for various application requirements, that can be used in monitoring of industrial production processes and media usage, and describes their RF circuits that conforms with ETSI Category 1 device requirements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.