Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  przetwarzanie mobilne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cooperative adaptive cruise control (CACC) for human and autonomous self-driving aims to achieve active safe driving that avoids vehicle accidents or traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC, the butterfly effect is encountered while exhibiting asynchronous brakes that easily lead to backward shock-waves and are difficult to remove. Several critical issues should be addressed in CACC, including (i) difficulties with adaptive steering of the inter-vehicle distances among neighbor vehicles and the vehicle speed, (ii) the butterfly effect, (iii) unstable vehicle traffic flow, etc. To address the above issues in CACC, this paper proposes the mobile edge computing-based vehicular cloud of the cooperative adaptive driving (CAD) approach to avoid shock-waves efficiently in platoon driving. Numerical results demonstrate that the CAD approach outperforms the compared techniques in the number of shock-waves, average vehicle velocity, average travel time and time to collision (TTC). Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.
EN
This paper presents an application of built-in sensors of a mobile device – a more robust version of authors’ own motion type detection method introduced in previous work. Use of accelerometer and magnetometer for recording acceleration in the World’s coordinate system is explained. The original results and identification criteria are briefly described. New tests and their results are presented. An improved version of the motion type identification method is introduced.
PL
Artykuł przedstawia zastosowanie sensorów urządzeń mobilnych – bardziej rozbudowaną wersję autorskiej metody identyfikacji rodzaju ruchu. Metoda ta została zaproponowana we wcześniejszej pracy. Krótko omówione zostało zastosowanie akcelerometru i magnetometru do pomiaru przyspieszenia we współrzędnych świata. Przedstawiono wyniki wstępnych pomiarów razem z oryginalnymi kryteriami rozpoznawania ruchu. Opisano nowe przeprowadzone eksperymenty i ich wyniki. Zaproponowano ulepszoną wersję metody rozpoznawania rodzaju ruchu.
3
Content available remote Parallel Code Generation for Mobile Devices
EN
Mobile computing is driven by pursuit of ever increasing performance. Multicore processing is recognized as a key component for continued performance improvements. This paper presents the Iteration Space Slicing (ISS) framework aimed at automatic parallelization of code for Mobile Internet Devices (MID). ISS algorithms permit us to extract coarse-grained parallelism available in arbitrarily nested parameterized loops. The loops are parallelized and transformed to multi-threaded application for the Android OS. Experimental results are carried out by means of the benchmark suites (UTDSP and NPB) using the ARM dual core processor. The related parallelization techniques are discussed, in particular for embedded systems. The future work is outlined.
PL
Przetwarzanie obliczeń za pomocą urządzeń mobilnych wiąże się z rosnącym zapotrzebowaniem na moc ich procesorów. Artykuł przedstawia zastosowanie narzędzia ISS (podziału przestrzeni iteracji pętli programowych) do wyznaczenia równoległego kodu dedykowanego dla urządzeń mobilnych (MID). Algorytmy pozwalają na wyznaczenie równoległości gruboziarnistej dla dowolnie zagnieżdżonych pętli i wygenerowanie wielowątkowego kodu dla systemu Android. Wyniki eksperymentalna dla zestawów pętli testowych NAS i UTDSP przeprowadzono wykorzystując dwurdzeniowy procesor ARM. Prace pokrewne i przyszłe zadania przedstawiono na końcu artykułu.
PL
W niniejszym artykule dokonano porównania wydajności podstawowych metod całkowania zaimplementowanych w środowisku App Inventor oraz Java dla platformy Android. Wybrane metody (prostokątów, trapezów i Simpsona) zastosowano dla funkcji liniowej, sześciennej oraz sinusoidy. Rezultaty eksperymentu wykazały, że działanie algorytmów zaimplementowanych w App Inventor jest wielokrotnie wolniejsze niż w Java dla Android, co znacząco ogranicza przydatność środowiska App Inventor do tworzenia aplikacji realizujących obliczenia matematyczne.
EN
This paper presents comparison of efficiency of basic integration methods implemented in App Inventor and Java for Android environment. Chosen methods (rectangle, trapezoidal and Simpson’s rules) were applied for linear, cubic and sine functions. Conducted experiment revealed that applications developed in App Inventor were significantly slower than in case of Java, which makes App Inventor unsuitable for applications involving intensive calculations.
5
Content available remote Handheld based hospital information system for fast data access at patient’s bed
EN
In the paper the concept, main design problems, applied solutions and some implementation details of a hospital information system based on handheld computers are presented. Increasing power and low prices of handheld computers make it very convenient tool for mobile information systems in medicine and health care. Permanent availability of patients data to nursing personnel and physicians at the patient’s bed make medical decision making easier, more accurate, reduces the risk of mistakes, eliminates unnecessary paper works and provides more up-to-date information. The purpose of the system being described here is to utilize all these advantages of mobile computing at the relatively low costs of hardware and software.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.