Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  pierścień pierwszy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote On derivations of operator algebras with involution
The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L(X) be an algebra of all bounded linear operators on X and let A(X) (…) L(X) be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D : A(X) → L(X) satisfying the relation 2D(AA*A) = D(AA*)A + AA*D(A) + D(A)A*A + AD(A*A) for all A (…) A(X). In this case, D is of the form D(A) = [A,B] for all A (…) A(X) and some fixed B (…) L(X), which means that D is a derivation.
Content available remote Identities with generalized derivations in semiprime rings
Let R be a semiprime ring. An additive mapping F:R  R is called a generalized derivation of R if there exists a derivation d : R  R such that F(xy) = F(x)y + xd(y) holds, for all x,y  R. The objective of the present paper is to study the following situations: (1) (...), for all x, y in some appropriate subset of R.
Content available remote A note on generalized (m, n)-Jordan centralizers
The aim of this paper is to define generalized (m, n)-Jordan centralizers and to prove that on a prime ring with nonzero center and char (R) ≠ 6mn(m+n)(m+2n) every generalized (m, n)-Jordan centralizer is a two-sided centralizer.
Content available remote Jordan structure on prime rings with centralizers
Our object in this paper is to study the generalization of Borut Zalar result in [1] on Jordan centralizer of semiprime rings by prove the following result: Let R be a prime of characteristic different from 2, and U be a Jordan ideal of R. If T is an additive mapping from R to itself satisfying the following condition T(ur + ru) = uT(r) + T(r)u, then T(ur) = uT(r), for all r is an element of R, u is an element of U.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.