Ograniczanie wyników
Czasopisma
Autorzy
Lata
Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Strona / 1
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  balans energetyczny
Sortuj według:

Ogranicz wyniki do:
Strona / 1
EN
This paper sheds light on the formulation of a new equilibrium local scour depth equation around a pier. The total bed materials removed from the scour hole due to the force exerted by the fowing fuid after colliding with the pier in the fow feld are estimated. At the equilibrium condition, the shape of the scour hole around the pier may take any form, viz. linear, circular, parabolic, triangular, or combination of diferent shapes. To consider that, two functions are assumed at the stoss and the lee sides of the pier. The total volume of bed materials removed from the scour hole of an arbitrary shape at the stoss and the lee sides of the pier is obtained by integrating the two functions. The equilibrium scour depth is formed by applying the energy balance theorem. An example problem is illustrated and the results are compared with the equations presented by Melville and Coleman (Bridge scour. Water Resources Publication, Colorado, 2000) and HEC-18 (Richardson and Davis in Evaluating scour at bridges, HEC-18. Technical report no. FHWA NHI, 2001).
EN
The paper presents the results of numerical computations performed for the furnace chamber waterwalls of a supercritical boiler with a steam output of 2400 x 10[3] kg/h. A model of distributed parameters is proposed for the waterwall operation simulation. It is based on the solution of equations describing the mass, momentum and energy conservation laws. The aim of the calculations was to determine the distribution of enthalpy, mass flow and fluid pressure in tubes. The balance equations can be brought to a form where on the left-hand side space derivatives, and on the right-hand side – time derivatives are obtained. The time derivatives on the right-hand side were replaced with backward difference quotients. This system of ordinary differential equations was solved using the Runge-Kutta method. The calculation also takes account of the variable thermal load of the chamber along its height. This thermal load distribution is known from the calculations of the heat exchange in the combustion chamber. The calculations were carried out with the zone method.
Strona / 1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.