Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ship emissions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Marine diesel engines lose a huge amount of fuel heat content in the form of exhaust gas and jacket cooling water, especially onboard high-powered marine vehicles such as Ro-Pax ships. In this paper, the possibility of using the waste heat of marine diesel engines as a source of heat for air conditioning absorption system is investigated. The thermodynamic analysis, in addition to the environmental and economic analysis of the air condition absorption cycle operated with two heat sources using lithium bromide as absorbent, are performed using the Engineering Equation Solver (EES) software. The last 10 years have seen a steady growth in the passenger ferry and Ro-Pax market, with particularly strong growth in passenger numbers. As a case study, a Ro-Pax vessel operating in the Red Sea area is considered, regarding the profitability of using air conditioning absorption system. The results show specific economic benefits of the jacket cooling water operated absorption refrigeration unit (ARU) over the exhaust gas operated unit, with annual costs of capital money recovery of 51,870 $/year and 54,836 $/year, respectively. Environmentally, applying an ARU machine during cruising will reduce fuel consumption by 104 ton/year. This, in turn, will result in reducing NOx, SOx, and CO2 emissions with cost-effectiveness of 7.73 $/kg, 20.39 $/kg, and 0.13 $/kg, respectively.
EN
The world is facing the challenge of continuously increasing energy consumption. At the same time, the energy resources are getting scarcer. Despite a sudden significant drop of fuel prices worldwide, research activities that focus on reducing the dependence on fossil fuels as a traditional source of energy still have the preference in the field of shipping industry. The use of clean and renewable energies, such as solar energy for instance, is proposed as a method to improve the ship efficiency. Ships can get the benefits from solar energy due to the fact that most of their upper decks are always exposed to the Sun, especially in sunny water regions. The present paper discusses the effectiveness and challenges of installing solar panels for auxiliary power production on board a ship. As a case study, the research evaluates both economic and environmental benefits resulting from implementing such concept aboard a research vessel.
EN
Shipping emits a variety of air pollutants: sulphur dioxide (SOx), nitrogen oxides (NOx ), carbon dioxide (CO2 ) and particulate matter PM. Air pollutant emissions from maritime transport can be transported over long distances and thus increasingly contribute to air quality problems. Key environmental regulations (international and European) coming into force in this decade address emissions of SOx , NOx , CO2 and PM to control and limit their impact in the atmosphere. In the European Union, accordingly to the legal regulations, in the sulphur emission control areas the required SOx content of fuel will be reduced from 1.5 % to 0.1 % beginning January 2015. Globally, from 2020 onwards, ships operating in all other European Sea areas will have to use fuels with sulphur content of 0.5 % or less.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.