Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  macierz wielomianowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
We investigate Ore polynomial matrices, i. e., matrices with polynomial entries in d/dt whose coefficients are meromorphic functions in t and as such constitute a non-commutative ring. In particular, we study the properties of hyper-regularity and unimodularity of such matrices and derive conditions which make it possible to efficiently check for these characteristics. In addition, this approach enables computation of hyper-regular left and right and unimodular inverses.
Content available remote A study on new right/left inverses of nonsquare polynomial matrices
This paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical right/left inverses of polynomial matrices are introduced, including the so-called [...]-inverses, [...]-inverses and, in particular, S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The application-oriented problem of selecting stable inverses is also solved. Applications in inverse-model control, in particular robust minimum variance control, are exploited, and possible applications in signal transmission/recovery in various types of MIMO channels are indicated.
We review the realization theory of polynomial (transfer function) matrices via 'pure' generalized state space system models. The concept of an irreducible-at-infinity generalized state space realization of a polynomial matrix is defined and the mechanism of the 'cancellations' of 'decoupling zeros at infinity' is closely examined. The difference between the concepts of irreducibility and minimality of generalized state space realizations of polynomial (transfer function) matrices is pointed out and the associated concepts of dynamic and non-dynamic variables appearing in generalized state space realizations are also examined.
Content available remote Generalizations of the Cayley-Hamilton theorem with applications
New generalizations of the classical Cayley-Hamilton theorem for rectangular matrices, block matrices, matrices depending on parameters, discrete-time and continuous-time systems with delays, polynomial matrices with commuting matrices, n-D polynomial matrices, singular systems, right and left inverse of polynomial matrices, rational matrices, impulse response matrices and nonlinear time-varying systems are presented. Some applications of the generalizations and illustrating examples are also given.
W pracy podano nowe uogólnienia klasycznego twierdzenia Cayley-Hamiltona na: macierze prostokątne, macierze blokowe, macierze zależne od parametrów, macierze układów ciągłych i dyskretnych z opóźnieniami, macierze wielomianowe z macierzami przemiennymi, macierze wielomianowe o elementach będącymi funkcjami n zmiennych, macierze układów singularnych, prawe i lewe odwrotności macierzy wielomianowych, macierze wymierne, macierze odpowiedzi impulsowych oraz na macierze układów nieliniowych o parametrach zmiennych w czasie. Podano również pewne zastosowania tych uogólnień twierdzenia Cayley-Hamiltona. Rozważania zostały zilustrowane przykładami.
Klasyczne twierdzenie Cayleya-Hamiltona zostało uogólnione na prawe i lewe odwrotności macierzy wielomianowych oraz na macierze wymierne. Wykazano, że uogólnione twierdzenie Cayleya-Hamiltona jest prawdziwe również dla odwrotnej macierzy wymiernej. Wyznaczono zależności wiążące macierze spełniające uogólnione twierdzenie Cayleya-Hamiltona macierzy wymiernej i jej odwrotności.
The classical Cayley-Hamilton theorem is extended forrightand left inverses of polynomial matrices and for rational matrices. It is shown that the extended Caley-Hamilton theorem is also valid for inverses of rational matrices. Relationships between matrices satisfying the extended Cayley-Hamilton theorem for rational matrices and their inverses are derived.
Content available remote Proper feedback compensators for a strictly proper plant by polynomial equations
We review the polynomial matrix compensator equation XlDr + YlNr = Dk (COMP), e.g. (Callier and Desoer, 1982, Kučera, 1979; 1991), where (a) the right-coprime polynomial matrix pair (Nr,Dr) is given by the strictly proper rational plant right matrix-fraction P = NrD-1 r , (b) Dk is a given nonsingular stable closed-loop characteristic polynomial matrix, and (c) (Xl, Yl) is a polynomial matrix solution pair resulting possibly in a (stabilizing) rational compensator given by the left fraction C = X-1 l Yl. We recall first the class of all polynomial matrix pairs (Xl, Yl) solving (COMP) and then single out those pairs which result in a proper rational compensator. An important role is hereby played by the assumptions that (a) the plant denominator Dr is column-reduced, and (b) the closed-loop characteristic matrix Dk is row-column-reduced, e.g., monically diagonally degree-dominant. This allows us to get all solution pairs (Xl, Yl) giving a proper compensator with a row-reduced denominator Xl having (sufficiently large) row degrees prescribed a priori. Two examples enhance the tutorial value of the paper, revealing also a novel computational method.
Content available remote On the computation of the minimal polynomial of a polynomial matrix
The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.