Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Technika spektrometrii w podczerwieni (IR) stosowana jest do identyfikacji substancji organicznych, polimerowych i w niektórych przypadkach materiałów nieorganicznych. Zgodnie z tezą, że era paliw kopalnych powoli zbliża się do końca, zaistniała konieczność szukania i testowania alternatywnych źródeł energii. Gaz ziemny zawierający metan stanowi źródło energii wytwarzające duże ilości gazów cieplarnianych. Magazynowanie i wytwarzanie energii z paliw takich jak biogaz stanowi jedno z wielu innowacyjnych podejść podczas produkcji w zamkniętych, neutralnych pod względem CO2 obiegach (biogazownie). Technologie służące do wytwarzania biogazu i wykorzystujące biogaz kwalifikują się do otrzymania dofinansowania wspierającego rozwój OZE. Biogaz jest uważany za odnawialne źródło energii, obieg węgla w cyklu produkcji jego surowców i zużycia jest zamknięty i nie wiąże się z emisją netto dwutlenku węgla. Spektrometry IR pracujące zarówno w zakresie średniej, jak i bliskiej podczerwieni dają możliwości analizy chemicznej i materiałowej z dużą czułością i dokładnością, przez co mogą być szeroko stosowane w monitorowaniu środowiska lub do kontrolowania prowadzonych procesów technologicznych. W artykule opisano analizę próbek biogazu za pomocą spektrometrii w podczerwieni z transformacją Fouriera z zastosowaniem kuwety gazowej o regulowanej drodze optycznej. Badane próbki pochodzą z przerobu odpadów gorzelnianych. Przedstawiono analizę próbek gazów wzorcowych będących głównymi składnikami biogazu oraz dokonano porównania otrzymanych widm IR z widmami rzeczywistych próbek biogazu. Podjęto próbę określenia możliwości użycia tej techniki do wykrywania zanieczyszczeń, takich jak obecność gazowego amoniaku. Przeprowadzone badania potwierdziły możliwości analityczne badania głównych składników biogazu. Zawartość substancji będących zanieczyszczeniami biogazu może okazać się za niska do ich oznaczenia w przypadku ich śladowych ilości, wtedy spektrometria IR może okazać się niewystarczająca m.in. do oceny skuteczności prowadzonych procesów oczyszczania biogazu, dlatego należy ją stosować w połączeniu z analizą GC.
EN
The infrared (IR) spectrometry technique is used to identify organic substances, polymers and, in some cases, inorganic materials. In line with the thesis that the era of fossil fuels is slowly coming to an end, there has been a need to search for and test alternative energy sources. Natural gas containing methane is an energy source that produces large amounts of greenhouse gases. Storing and producing energy from fuels such as biogas is one of the many innovative production approaches in closed, CO2-neutral circuits (biogas plants). Technologies for the production and use of biogas are eligible for funding supporting the development of renewable energy sources. Biogas is considered to be a renewable energy source, the carbon cycle in its raw material production and consumption is closed, with zero net carbon emissions. IR spectrometers operating both in the mid-infrared and near-infrared range provide the possibility of chemical and material analysis with high sensitivity and accuracy, therefore they can be widely used in environmental monitoring or to control technological processes. The article describes the analysis of biogas samples by Fourier transform infrared spectrometry with the use of a gas cuvette with adjustable optical path. The tested samples come from the processing of distiller's waste. The paper presents the analysis of standard gas samples, which are the main components of biogas, and compares the obtained IR spectra with the spectra for real biogas samples. An attempt was made to determine the applicability of this technique for the detection of contaminants such as the presence of ammonia gas. The conducted research confirmed the analytical possibilities of examining the main components of biogas. The content of biogas pollutants may turn out to be too low for their determination in the case of trace amounts, and in such a case the IR spectrometry may turn out to be insufficient, e.g. to assess the effectiveness of biogas purification processes, therefore it should be used in conjunction with the GC analysis.
PL
Artykuł przedstawia możliwości wykorzystania alkoholi OXO jako potencjalnych komponentów oleju napędowego, które będą oceniane poprzez badanie jakości mieszanek ON + alkohol OXO. Określenie podczas badań stopnia zmian i ewentualnych przekroczeń parametrów jakościowych oleju napędowego z różną zawartością alkoholu OXO w stosunku do wymagań stawianym olejowi napędowemu, pozwolił przedstawić pozytywny i negatywny wpływ tego typu komponentów na jakość badanego paliwa, pracy i eksploatację silnika Diesla oraz na całkowitą emisję gazów do środowiska naturalnego.
EN
The article presents the possibilities of using OXO alcohols as potential diesel oil components, which were assessed by testing the quality of the used ON + OXO alcohol mixtures. Determining the degree of changes and exceeding the quality parameters of diesel oil with different OXO alcohol content in relation to the requirements for diesel oils during the tests, allowed to present the positive and negative impact of this type of mixtures on the quality of the tested fuel, work and operation of the diesel engine and on the total gas emissions to the environment natural.
PL
Mikroskopia w podczerwieni z transformacją fourierowską (FT-IR) wykorzystuje dwie techniki badawcze: mikroskopię i spektrometrię FT-IR. Pozwala to na analizę materiału pod kątem występowania charakterystycznych grup funkcyjnych oraz na przedstawienie jego topograficznego rozkładu. Daje to możliwość analizy związków chemicznych w mikroobszarach badanego materiału. Przegląd literatury wskazuje na szerokie zastosowanie tych połączonych technik, m.in. w diagnostyce medycznej, kryminalistyce czy w badaniu jednorodności analitów. Analizie poddawane są tkanki, a także pojedyncze komórki. Wśród zalet połączonych technik jako narzędzia diagnostycznego należy wymienić możliwość rejestracji anomalii składu chemicznego z mikrometrową rozdzielczością przy minimalnej preparatyce, próbki nie wymagają dodatkowego utrwalania materiału do badań ani stosowania żadnych markerów. Niniejszy artykuł ma na celu przedstawienie przykładowych możliwości zastosowania mikroskopii IR w pracy laboratorium naftowego, podczas badania próbek ciekłych oraz stałych w postaci zawiesin czy osadów wytrąconych na elementach zbiorników, silników i różnych urządzeń. Wskazano na konieczność właściwego przygotowania próbek w zależności od ich charakteru oraz rodzaju zastosowanej techniki. Pokazano też możliwości związane z posiadanymi bibliotekami widm oraz mapowania po wybranym obszarze widm. Należy jeszcze raz wskazać na istotną rolę, jaką pełni mikroskopia FT-IR w badaniu próbek niejednorodnych, głównie ze względu na możliwość wytypowania konkretnych punktów pomiarowych o większej koncentracji substancji organicznych w stosunku do obszarów z dużą koncentracją, np. wody. Dzięki temu można w prostszy sposób określać, czy dana substancja lub produkt występujący w miejscu poboru wpływa na powstawanie osadów lub emulsji. Mikroskopia IR umożliwia przede wszystkim prowadzenie analizy niewielkiej ilości próbki, co jest szczególnie ważne w badaniu pobranych substancji w śladowych ilościach.
EN
Fourier transform infrared microscopy (FTIR) uses two research techniques: microscopy and FTIR spectrometry. This allows to analyze fragments in terms of specific functional groups and the presentation of its topographic distribution. It enables the analysis of test results in the micro-areas of the tested material. IR microscopy is a technique that brings many advantages, mainly when it comes to examining samples with heterogeneous composition and surface. Thanks to it, it is possible not only to analyze small sample areas, but also to distinguish individual substances or groups of bonds present in them. During the test, the analyst can check both the homogeneity of the sample and the specific areas in which its composition changes. Due to this variety of applications, this technique is widely used in medicine, as well as in environmental research, forensics, and the research in the oil industry discussed in this article. The aim of the article is to present examples of the possibilities of applying the described technique in the work of an oil laboratory. It should be pointed out once again that this is of great importance, especially in FTIR microscopy when sampling heterogeneous samples, due to the possibility of selecting measurement point results for additional concentrations of organic compounds compared to areas with, for example, water. This makes it easier to determine whether a given substance or product is initially affecting the sediment or emulsion. Above all, IR microscopy allows a small amount of sample to be analyzed, which is particularly important when examining the collected substances in trace amounts.
PL
W niniejszej pracy zbadano możliwości wykorzystania techniki chromatografii gazowej GC-FID do badania zawartości mono- i diacylogliceroli w strumieniu z procesu współuwodornienia oleju rzepakowego i średnich destylatów naftowych. Produkty z tego procesu planuje się w przyszłości coraz szerzej wykorzystywać jako nowy biokomponent paliwa do silników o zapłonie samoczynnym. Przed wprowadzeniem nowego rodzaju komponentów do paliw konieczne jest wykonanie na nich szczegółowych badań, szczególnie pod kątem pozostałości surowca tłuszczowego. Rozporządzenie Ministra Klimatu z dnia 24 czerwca 2020 r. w sprawie zawartości biokomponentów powstałych w wyniku współuwodornienia zawiera wytyczne określania poziomu przereagowania biomasy na podstawie zawartości triacylogliceroli w hydrorafinacie. Stąd – na podstawie oznaczenia zawartości triacylogliceroli – możliwa jest ocena prawidłowości zachodzenia procesu współuwodornienia. Jednakże w produkcie z tego procesu mogą być również obecne inne składniki tłuszczowe w formie nieprzereagowanych pozostałości. Uzasadnione wydaje się zatem przeprowadzenie badań innych składników śladowych pochodzenia tłuszczowego w hydrorafinacie ze względu na wprowadzanie do procesu współuwodornienia zróżnicowanych surowców roślinnych wraz z węglowodorami pochodzenia naftowego. Z uwagi na brak dostępnych metodyk znormalizowanych badania tego typu produktów dokonano przeglądu literatury w zakresie możliwości zastosowania technik analitycznych, obejmujących chromatografię gazową i cieczową, do badania tzw. mono- i diacylogliceroli, stanowiących pozostałości surowca tłuszczowego, w różnego rodzaju matrycach, w tym w olejach roślinnych i w estrach metylowych kwasów tłuszczowych. W przypadku badania zawartości mono- i diacylogliceroli w produkcie z procesu współuwodornienia konieczne było zastosowanie wstępnego oczyszczania oznaczanych składników techniką klasycznej chromatografii cieczowej. Technika ta umożliwia oddzielenie matrycy próbki i zatężenie oznaczanych składników przed analizą techniką chromatografii gazowej. Z uwagi na skomplikowaną matrycę próbek i niski wymagany poziom oznaczalności konieczne jest dobranie odpowiednich warunków usuwania matrycy techniką klasycznej chromatografii cieczowej. W tym celu opracowano metodykę własną badania zawartości mono- i diacylogliceroli w hydrorafinacie, którą wykorzystano do badań wybranych próbek rzeczywistych hydrorafinatów z procesu współuwodornienia co-HVO i HVO. Wskazano na możliwość wykrywania tych śladowych składników tłuszczowych na niskim poziomie zawartości – już od 2 mg/kg. Uzyskano wysoką czułość metody, która pozwoliła na dodatkową ocenę jakościową tego rodzaju produktów z procesów współuwodornienia, które stopniowo zyskują na znaczeniu na europejskim rynku paliw płynnych.
EN
In this work, the possibilities of using the GC-FID gas chromatography technique for determination of mono- and diacylglycerols content in the stream from the co-hydrogenation of rapeseed oil and middle distillates were investigated. Products from this process are planned to be increasingly used in the future as a new biocomponent of fuel for diesel engines. Before introducing new types of fuel components, it is necessary to test them in detail, especially in terms of residues of the fat raw material. The Regulation of the Minister of Climate of June 24, 2020 on the content of biocomponents formed as a result of co-hydrogenation indicates that the level of biomass conversion is determined on the basis of the content of triacylglycerols in the hydro-raffinate. Hence, on the basis of this determination, it is possible to assess the correctness of the co-hydrogenation process. However, other fatty components may be present in the product of this process in the form of unreacted residues. Therefore, it seems justified to carry out studies on other trace components of fatty origin in the hydro-treating material, due to the introduction of various plant materials together with petroleum hydrocarbons into the co-hydrogenation process. Due to the lack of available standardized methodologies for testing this type of products, a review of the literature was made regarding the possibility of using analytical techniques including gas and liquid chromatography to determine content of the so-called mono- and dicylglycerols, being residues of the fatty raw material, in various types of matrices, including vegetable oils and fatty acid methyl esters. In the case of examining the content of mono- and diacylglycerols in the product from the co-hydrogenation process, it was necessary to use the technique of liquid chromatography for the first-step concentration of the substances of interest. This technique made it possible to separate the sample matrix and concentrate the components to be determined prior to gas chromatographic analysis. Due to the complicated matrix of samples and the low required level of quantification, it was necessary to select appropriate conditions for removing the matrix using the classical liquid chromatography technique. A proprietary methodology for testing the content of mono- and diacylglycerols in the hydro-raffinate was developed, which was used to test selected samples of real hydroraffinates from the co-HVO and HVO co-hydrogenation process. The ability to detect these trace fat components at a low level was indicated – as low as 2 mg/kg. The obtained sensitivity of the method allowed for additional qualitative assessment of this type of co-hydrogenation products, which are gradually gaining importance on the European market of liquid fuels.
EN
The paper is a thermodynamics analysis of the removal of any inert gas from the tank using the vapors of any liquefied petroleum gas cargo (called cargo tank gassing-up operation). For this purpose, a thermodynamic model was created which considers two boundary cases of this process. The first is a ‘piston pushing’ of inert gas using liquefied petroleum gas vapour. The second case is complete mixing of both gases and removal the mixture from the tank to the atmosphere until desired concentration or amount of liquefied petroleum gas cargo in the tank is reached. Calculations make it possible to determine the amount of a gas used to complete the operation and its loss incurred as a result of total mixing of both gases.
EN
The paper presents a thermodynamic analysis of the removal of an inert gas from the tank using the vapor of liquefied petroleum gas cargo (called cargo tank gassing-up operation). For this purpose a thermodynamic model was created which considers two extreme cases of this process. The first is ‘piston pushing’ of inert gas using liquefied petroleum gas vapour. The second case is the complete mixing of both gases and removal the mixture from the tank to the atmosphere until desired concentration or amount of liquefied petroleum gas cargo in the tank is reached. On the example of nitrogen as inert gas and ethylene as a cargo, by thermodynamic analysis an attempt was made to determine the technical parameters of the process, i.e., pressure in the tank, temperature, time at which the operation would be carried out in an optimal way, minimizing the loss of cargo used for gassing-up. Calculations made it possible to determine the amount of ethylene used to complete the operation and its loss incurred as a result of total mixing of both gases.
EN
Ethylene is one of the basic raw materials of the petrochemical industry that is used to produce plastics. One of the largest producers of this compound is the USA, and a substantial increase in the demand for ethylene has also been recently observed in the Middle East, the Far East, and China. This requires the transport of this cargo by sea. Ethylene carriers are a type of LPG ships and are equipped with a cascade cycle that uses propylene or refrigerant R404A as a coolant medium. These vessels have been designed to withstand the minimum temperature of ethylene of –104°C for fully-cooled cargo. A mixture of ethylene and air (from concentrations of 2.75–2.6%) becomes explosive during heating under elevated pressures. Hence, it is necessary to form an inert atmosphere in the tanks using mostly nitrogen before the ethylene cargo is loaded. The process of aerating, inerting, gassing-up, and cooling cargo tanks and cargo is constantly repeated during the operation of LPG carriers. Due to the large amounts of ethylene lost during gassing-up, which results in significant financial losses and disruptions in cargo compressors during the cooling of the tanks and cargo, this operation is the most problematic of all. In this article, a solution is proposed for performing the gassing-up procedure which prevents excessive ethylene loss.
8
EN
Gas carriers are one of the most advanced types of ships and are equipped with the latest technological achievements. Due to the development of this industry, the demand for ethylene transport by sea has increased significantly in recent years. Nonetheless, it is one of the most problematic loads in terms of loading operations. Due to the small density differences between ethylene and nitrogen, ethylene is one of the most problematic hydrocarbons with respect to the efficient gasification of cargo tanks. Additionally, ethylene is one of the most expensive cargoes carried on gas carriers. The above aspects make it necessary to carry out a detailed analysis of the flushing of nitrogen-loaded cargo tanks with ethylene vapors to determine the range of technical parameters to enable more efficient tank gassing-up. This paper provides a detailed analysis of an experimental cargo tank gassing-up operation on an ethylene carrier. The process was carried out in accordance with previously-determined assumptions to optimize the discussed operations, assess how the cargo tank pressure influences this process, reduce cargo loss during gassing-up, and eliminate cargo loss during its cooling. The conclusions from this experiment provide guidelines for subsequent tests.
EN
The paper is a detailed analysis of the devices used in measurements of hydrocarbon content on gas carriers during cargo tank gassing-up operations. The characteristics of the Riken Keiki GX-8000 portable gas detector used commonly on ships are described, the types of detection used in the device in relation to the detected gases are discussed, which made it possible to question the validity of using the detector for analysing the concentrations of large quantities of hydrocarbons on gas carriers. Also discussed is a device enabling such analyses to be carried out much more accurately – the Agilent 490 Micro GC chromatograph, which will substantially improve the process of cargo tank gassing-up.
10
Content available remote Operational problems of ethylene transport by LPG gas carriers
EN
Ethylene is one of the basic raw materials of the petrochemical industry used for the production of plastics, mainly plastic packaging. The USA is the largest producer of this compound. The enormous increase in demand for Ethylene has been observed in recent years in China as well as in the Middle and Far East. This caused an unprecedented increase in the demand for transport of this cargo by sea. Ethylene carriers for its transport are special construction LPG vessels, having a cascade cycle with Propylene medium (less often the refrigerant R 404 A). They have been designed in such a way as to withstand a working pressure of up to 5.4 bar, and the minimum temperature of the transported load is minus 104⁰C for fully cooled Ethylene. This cargo is explosive in the mixture with air (within concentrations of 2.75-2.6%) and during heating under elevation pressure. Therefore, it is required to transport Ethylene in with an inert gas, most often Nitrogen. During the operation of LPG carriers carrying Ethylene, processes of aeration, inerting, gassing-up, cooling tanks and a cargo are repeatedly carried out. The most problematic to carry is gassing-up operation, because it is associated with significant amounts of Ethylene loss, this causes large financial losses. In the article, the authors attempted to diagnose the most serious problems during carrying out the most important for cargo loss the cargo handling operations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.