Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  VLF
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Taking under consideration, that reliable transmission of energy is fundamental to proper operation of national power grid, quality control is essential for newly installed and in-service cable connections. It is known that routine tests (insulation coordination) completely check the quality of a power cable and accessories at the manufacturer. Nevertheless, the risk of problems with the delivery and installation of accessories can affect the quality of a newly installed power cable circuit. Based on international experience gathered on various power grids over the past 20 years, this article focuses on the use of non-destructive testing for after-installation - and diagnostic tests of all types of transmission cables. This document discusses in particular various actual aspects of testing new connections as well as the condition assessment of service aged HV power cables.
EN
On May 20 and May 29, 2012, earthquakes of magnitude MW 6.1 and 5.8, respectively, struck Emilia-Romagna of Italy. We present the results obtained from the US Navy VLF Transmitter’s NSY signal of 45.9 kHz transmitted from Niscemi, in the province of Sicily, Italy, and received at the Kiel Longwave Monitor, Germany, for 2012. We analyzed the terminator times, D-layer preparation and disappearance times and nighttime fuctuation parameters. We also analyzed trends, dispersion and nighttime fuctuation which gave us possible precursors to these earthquakes. Possible perturbations due to other factors were fltered. Moreover, the fndings of these two earthquakes were compared to Central Italy EQ on August 24, 2016, and Tuscany EQ on June 21, 2013. Therefore, this manuscript is the overall analysis of four earthquakes, out of which two were already published before. As our TRGCP path is North–South, the sunrise and sunset times in transmitter and receiver places match making a pathway for VLF/LF smoother and therefore hoping to obtain more natural data. We found many clear anomalies (as precursors) in terminator times 5 days to 16 days before the earthquakes. Moreover, using nighttime fuctuation method, we found clear anomalies 5–13 days prior to main earthquakes. This exactly correlates with the fndings of previous authors that ionospheric perturbations are seen from few days to few weeks before the seismic activity. In addition to this, we observed an unexpected decrease in dispersion on certain anomalies where it was supposed to increase, thereby not supporting our fnding to some extent. To resolve this problem, we devised a new parameter called dispersion nighttime (dispersion*). On analyzing, this parameter decreases signifcantly on days of nighttime anomalies, thereby supporting our precursors to much extent.
EN
On August 24, 2016, an earthquake of magnitude 6.2 struck Central Italy (42.706°N and 13.223°E) at 1:36 UT. We present the results obtained from the US Navy VLF Transmitter’s NSY signal of 45.9 kHz transmitted from Niscemi, in the province of Sicily, Italy and received at the Kiel Longwave Monitor, Germany for 2016. We analysed the terminator times and their individual differences. We also analysed trends, dispersion and night time fluctuation which gave us a possible precursor the Italy earthquake. We found ionospheric perturbations in these parameters on 14th, 19th and 22nd of August, few days prior. Moreover, we filtered the possible effects due to lightning, storms and auroras if any.
EN
In this paper, we analyze the TEC data for April 2013 observed at Agra station, India (geogr. lat. 27.2° N, long. 78° E) to examine the effect of earthquake of magnitude M = 7.8 which occurred on 16 April 2013 at Pakistan–Iran border region. We process the TEC data using the σ statistical criterion to find out anomalous variation in TEC data. We also study the VLF propagation signal from NPM, Hawaii (21.42° N, 158° W), which is monitored at the same station (Agra station) in the light of this earthquake as well as solar flares. The nighttime fluctuation method is used to analyze the VLF data for the period of ±5 days from the day of earthquake (11-21 April 2013). The anomalous enhancements and depletions are found in TEC data on 1-9 days before the occurrence of event.
EN
We present here the results of sub-ionospheric VLF perturbations observed on NWC (19.8 kHz) transmitter signal propagating in the Earth-ionosphere waveguide, monitored at our low latitude station Agra. During the period of observation (June-December 2011), we found 89 cases of VLF perturbation, while only 73 cases showing early character associated with strong lightning discharges. Out of 73 events, 64 (~84%) of the early VLF perturbations are found to be early/slow in nature; the remaining 9 events are early/fast. The onset duration of these early/slow VLF perturbations is up to ~ 5 s. A total of 54 observed early events show amplitude change lying between ± 3.0 dB, and phase change ± 12 degree, respectively, and found to occur mainly during nighttime. One of the interesting results we found is that the events with larger recovery time lie far away from the VLF propagation path, while events with smaller duration of recovery are within the ± 50-100 km of signal path. The World Wide Lightning Location Network (WWLLN) data is analysed to find the location of causative lightning and temporal variation. The lightning discharge and associated processes that lead to early VLF events are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.