In this paper a novel current mode charge pump architecture is shown and discussed. The presented DC-DC voltage converter uses extremely low filtering capacitance while still maintaining a low ripple amplitude of the output voltage. The proposed architecture is silicon proven in CMOS 130 nm technology. The power efficiency and layout area trade-offs of the proposed architecture are considered also.
This paper presents a dual inductor-fed boost converter with an auxiliary transformer and voltage doubler for sustainable energy power converters. The new topology integrates a two-phase boost converter and a dual inductor-fed boost converter. The energy stored and transferred by both inductors can attain a wide input-voltage and load range which uses a constant switching frequency, by controlling the time duration of the simultaneous conduction of the two switches. Among other current-fed type boost converters the presented topology is attractive due to the high voltage conversion ratio, less stress on the components and less switch conduction loss. To verify the feasibility of this topology, the principles of operation, theoretical analysis, and experimental waveforms are presented for a 1 kW prototype.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper presents a single phase full bridge inverter with coupled filter inductors and voltage doubler for PV module integrated converter (MIC) system. In DC/DC stage, full bridge circuit with high frequency sinusoidal pulse width modulation control is used, and high frequency transformer with voltage doubler rectifier circuit to increase conversional ratio is adopted. Finally, at the conversion end the rectified sinusoidal waveforms is generated. The coupled filter inductors, which are placed in voltage doubler, not only reduce circulating current, which increases efficiency but also make the rectified output sinusoidal waveforms of DC/DC stage as smooth voltage source. In DC/AC stage, the full bridge circuit with line frequency square wave control is adopted to reduce switching losses and control cost. To verify the presented analysis a 100 W prototype single phase 220 VAC 50 Hz inverter output has been constructed and the experimental results are given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.