Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zgazowanie węgla brunatnego
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W 2019 rozpoczęła się realizacja jednego z największych projektów pilotażowych dotyczących wykorzystania węgla brunatnego do produkcji wodoru. Projekt pod nazwą „Hydrogen Energy Supply Chain”, tłumaczony jako „Łańcuch Dostaw Energii Wodorowej” (w skrócie HESC), realizowany jest przez przedsiębiorstwa energetyczne z Australii i Japonii, przy aktywnym wsparciu rządów tych dwóch państw. Zakłada on wydobywanie węgla brunatnego, jego zgazowywanie w celu produkcji wodoru oraz transportowanie drogą morską do Japonii. Wartość projektu pilotażowego wynosi 353 mln USD (około 1,4 mld PLN). Bez wątpienia jest to jeden z największych projektów badawczych powiązanych z wykorzystaniem węgla brunatnego. Nic więc dziwnego, że jest on z uwagą śledzony przez inne kraje posiadające bogate zasoby tego surowca. Wyniki projektu mogą mieć decydujące znaczenia dla przyszłości węgla brunatnego, który obecnie służy przede wszystkim do produkcji energii elektrycznej w procesie jego spalania. Jednak z uwagi na coraz ostrzejszą politykę klimatyczną oraz rozwój OZE, ograniczenie się tylko do tego sposobu jego wykorzystania może spowodować znaczne ograniczenie, a nawet całkowite wyeliminowanie węgla brunatnego z gospodarki. W artykule przedstawiono podstawowe założenia projektu „Hydrogen Energy Supply Chain”, jak również jego poszczególne kroki milowe.
EN
In 2019, the implementation of one of the most significant pilot projects regarding the use of lignite for hydrogen production began. The project called “Hydrogen Energy Supply Chain” (HESC) is implemented by energy companies from Australia and Japan, with the support of the governments of these two countries. It assumes lignite extraction, gasification for hydrogen production and transport to Japan by sea. The value of the pilot project is USA 353 million (approximately PLN 1.4 billion). Undoubtedly, this is one of the most significant research project related to the utilization of lignite. No wonder that it is closely followed by other countries with abundant resources of this raw material. Project results may be decisive for the future of lignite, which is currently used primarily for the production of electricity in combustion process. However, due to the increasingly stringent climate policy and the development of renewable energy sources, limiting oneself to this method of its utilization may significantly reduce or even eliminate lignite from the economy. The article presents the underlying assumptions of the “Hydrogen Energy Supply Chain” project as well as its milestones.
EN
Hydrogen as a raw material finds its main use and application on the Polish market in the chemical industry. Its potential applications for the production of energy in fuel cell systems or as a fuel for automobiles are widely analyzed and commented upon ever more frequently. At present, hydrogen is produced worldwide mainly from natural gas, using the SMR technology or via the electrolysis of water. Countries with high levels of coal resources are exceptional in that respect, as there the production of hydrogen is increasingly based on gasification processes. China is such an example. There some 68% of hydrogen is generated from coal. The paper discusses the economic efficiency of hydrogen production technologies employing lignite gasification, comparing it with steam reforming of natural gas technology (SMR). In present Polish conditions, this technology seems to be the most probable alternative for natural gas substitution. For the purpose of evaluating the economic efficiency, a model has been developed, in which a sensitivity analysis has been carried out. An example of the technological process of energy-chemical processing of lignite has been presented, based on the gasification process rooted in disperse systems, characteristics of the fuel has been discussed, as well as carbon dioxide emission issues. Subsequently, the assumed methodology of economic assessment has been described in detail, together with its key assumptions. Successively, based on the method of discounted cash flows, the unit of hydrogen generation has been determined, which was followed by a detailed sensitivity analysis, taking the main risk factors connected with lignite/coal and natural gas price relations, as well as the price of carbon credits (allowances for emission of CO2) into account.
PL
Wodór jako surowiec ma głównie zastosowanie na rynku Polskim w przemyśle chemicznym, jednak coraz częściej są szeroko analizowane i komentowane jego perspektywiczne zastosowania do produkcji energii w układach ogniw paliwowych czy jako paliwa samochodowego. W chwili obecnej na świecie wodór wytwarzany jest głównie z gazu ziemnego przy wykorzystaniu technologii reformingu parowego lub na drodze elektrolizy wody. Wyjątkiem są kraje dysponujące dużymi zasobami węgla, gdzie jego produkcja jest coraz częściej oparta na procesach zgazowania. Takim przykładem są Chiny, gdzie około 68% wodoru wytwarzane jest z węgla. Artykuł porusza tematykę oceny efektywności ekonomicznej technologii produkcji wodoru na drodze zgazowania węgla brunatnego odnosząc ją do technologii reformingu parowego gazu ziemnego (SMR). Aktualnie, w warunkach polskich technologia ta wydaje się być najbardziej prawdopodobną alternatywą substytucji gazu ziemnego. Na potrzeby oceny efektywności ekonomicznej zbudowano model, w którym przeprowadzono analizę wrażliwości, w szczególności zaprezentowano przykładowy proces technologiczny energo-chemicznego przetwarzania węgla brunatnego, bazujący na procesie zgazowania na podstawie układu dyspersyjnego, omówiono charakterystykę paliwa oraz kwestię emisji ditlenku węgla. Następnie szczegółowo opisano przyjętą metodykę oceny ekonomicznej oraz jej kluczowe założenia. Kolejno, bazując na metodzie zdyskontowanych przepływów pieniężnych, wyznaczono jednostkowy koszt wytworzenia wodoru, po czym dokonano szczegółowej analizy wrażliwości, uwzględniając główne czynniki ryzyka, związane z relacją cen węgla i gazu ziemnego oraz ceną pozwoleń na emisje CO2.
EN
The article presents the suitability of polish lignite deposits for clean coal technologies, mainly fluidized bed gasification and underground gasification. One of the key elements in this study, is a detailed diagnosis of the resource base, its analysis on the basis of the established verification criteria and -as a result – the achievement of a reliable assessment of suitability for highly efficient production of fuels and electric energy through lignite gasification in both surface and underground installations, taking into account both sozological conditions and protected geological sites. The analysis has shown that only 10 out of from 166 lignite deposit meet the criteria for the potential development of process underground gasification. In Poland, there is a core group of 30 lignite deposits with the ash content ranging from 20 to 25%, which fully meet the criteria for surface gasification. The lignite reserves in this group are over 11 billion tons, but only around one billion tons can be efficiently used for fluidized bed gasification process. Taking the geological structure into account, there is sufficient lignite resource base for both gas production and energy purposes. None of the attempts to use lignite for purposes other than combustion have ever been brought to the production stage. The gasification of lignite in Poland is a completely new opportunity for processing lignite, yet completely unused. This direction meets the criteria of clean coal technologies.
PL
W artykule przedstawiono przydatności polskich złóż węgla brunatnego dla czystych technologii węglowych, głównie zgazowania ze złożem fluidalnym i zgazowania podziemnego. Jednym z kluczowych elementów badań była szczegółowa analiza bazy zasobowej na podstawie ustalonych kryteriów weryfikacji i – jako rezultat – osiągnięcie wiarygodnej oceny przydatności do czystych technologii węglowych z uwzględnieniem warunków ochrony środowiska i sozologicznych. Analiza wykazała, że tylko 10 złóż spośród 166 spełnia kryteria dla potencjalnego rozwoju procesu podziemnego zgazowania. W Polsce istnieje około 30 złóż węgla brunatnego o zawartości popiołu od 20 do 25%, które w pełni spełniają kryteria zgazowania fluidalnego na powierzchni w gazogeneratorze. Zasoby węgla brunatnego w tej grupie to ponad 11 mld ton, ale tylko około jeden miliard ton może zostać efektywnie wykorzystane do procesu zgazowania ze złożem fluidalnym. Biorąc pod uwagę strukturę geologiczną, nie jest wystarczająca baza zasobów węgla brunatnego zarówno do celów produkcji gazu i energii. Żadna z prób wykorzystujących węgiel brunatny do celów innych niż spalanie nigdy nie zostały doprowadzone do etapu produkcji. Zgazowanie węgla brunatnego w Polsce jest zupełnie nową szansą dla przetwórstwa węgla brunatnego, ale zupełnie niewykorzystaną. Ten kierunek spełnia kryteria czystych technologii węglowych.
PL
W artykule zaprezentowano możliwość użytkowania węgla brunatnego z polskich złóż w gazogeneratorze ze złożem fluidalnym (fluidised bed). Zbadano wybrane, istotne w procesie zgazowania, parametry węgla, takie jak: całkowita wilgoć, wartość opałowa, popielność, całkowita zawartość siarki, skład elementarny, zawartość piasku i ksylitów oraz temperatura topnienia popiołu. Z przeprowadzonej wstępnej analizy jakości węgla brunatnego ze złóż polskich wynika, że może być on wykorzystywany w gazogeneratorze fluidalnym. Średnie wartości parametrów technologicznych badanego surowca w większości spełniają kryteria użytkowania go w tym procesie. Problematyczna jest w tym przypadku zbyt wysoka wilgotność i zbyt wysoka średnia zawartość SiO2w popiele. Wśród badanych parametrów dużą zmiennością w polskim węglu brunatnym charakteryzują się zawartość siarki, zawartość piasku, ksylitów i skład tlenkowy popiołu. Dlatego też niezbędne są dalsze szczegółowe badania technologiczne węgla brunatnego przed zastosowaniem go w procesie zgazowania.
EN
This article presents the possibility of lignite utilization from Polish lignite deposits in gas generator with fluidized bed. The selected properties which are crucial in the process of coal gasification were examined: total moisture, calorific value, ash content, total sulfur content, chemical composition, sand content, xylite content and ash melting point. The initial analysis of the quality of lignite from Polish deposits suggest that the coal can be used in the fluidized gas generator. Mean values of the technological properties of lignite largely meet the criteria for its use in this process. However, too high moisture and SiO2 content in ash may be the source of problems. Following properties of the Polish lignite are featured by high variability: sulfur content, sand content, xylite content and oxide composition of ash. Consequently, before the application of lignite in the gasification process, detailed technology studies should be performed.
PL
W artykule zaprezentowano możliwość użytkowania węgla brunatnego ze złoża Gubin w głównych typach gazogeneratorów: ze złożem stałym lub przesuwnym (moving bed), ze złożem fluidalnym (fluidised bed) i dyspersyjnych (przepływowe, strumieniowe) (entrained flow). Zbadano istotne w procesie zgazowania parametry węgla, takie jak: całkowita wilgotność, popielność, całkowita zawartość siarki, zawartość węgla i temperatura topnienia popiołu. Wyniki porównano z wymaganiami dla poszczególnych technologii zgazowania. Badany węgiel nie spełnia kryterium maksymalnej wilgotności, w związku z tym aby mógł być użytkowany w zgazowaniu, konieczne jest jego podsuszenie. Węgiel ze złoża Gubin spełnia kryterium maksymalnej popielności i minimalnej temperatury topnienia określone dla zgazowania ze złożem fluidalnym. Z przeprowadzonej wstępnej analizy jakości węgla brunatnego ze złoża Gubin wynika, że może być on wykorzystywany do zgazowaniu naziemnym w gazogeneratorze fluidalnym.
EN
The paper presents the possibility of using lignite from the Gubin deposit in the major types of gasification, including moving bed, fluidised bed and dispersion (entrained flow). Important parameters in the coal gasification process, such as total moisture, ash content, total sulfur content, carbon content and ash melting point, were studied. The results were compared with the requirements for each gasification technology. The coal does not meet the criterion of the maximum moisture content and – in order to be used in the gasification process – its drying is necessary. Lignite from the Gubin deposit meets the criteria of the maximum ash content and minimum melting temperature, specified for the fluidized bed gasification. A preliminary analysis of the quality of coal from the Gubin deposit suggests that it can be used in a ground-based gasification process using fluidized bed.
6
Content available remote Zgazowanie węgla brunatnego i wykorzystanie gazu do produkcji mocznika
PL
Przedstawiono wykonane w Poltegorze-Instytucie koncepcje budowy instalacji naziemnej zgazowania węgla brunatnego z potencjałem wytwórczym 1,2 mld m3 gazu oczyszczonego rocznie i produkcji z niego 860 tys. ton mocznika w roku z 4 mln t/r, węgla wydobywanego w kopalni Bełchatów. Zasygnalizowano rozwiązania innowacyjne: nowoczesną technologię fluidalnego zgazowania węgla brunatnego zrealizowaną w skali demonstracyjnej w RWE w Niemczech, technologię zgazowania na złożu przepływowym Shella, którą zastosowano w koncepcji zgazowania węgla i produkcji wodoru ze złoża Legnicy oraz badania prowadzone przez Poltegor-Instytut nad podziemnym zgazowaniem węgla ze złoża Sieniawa. Wskazano na priorytetowe w perspektywie wykorzystanie węgla brunatnego do produkcji mocznika z uwagi na dobre rokowania ekonomiczne i przede wszystkim na wykorzystanie w tej produkcji dwutlenku węgla.
EN
The paper presents concept developed in Poltegor Institute that concerns surface installation of brown coal gasification with annual production potential of 1.2 billion m3 of purified gas from 4 million tones/per year received from Bełchatów Brown Coal Mine. This amount of gas enables annual production of 860 thousand m3 of urea. Innovative solutions, modern technology of fluid-bed brown coal gasification demonstrated by RWE, Germany, entrained- -flow gasification technologies by Shell have been introduced. Shell technology was applied in the concept of coal gasification and hydrogen production for Legnica deposits. Research on underground coal gasification of Sieniawa deposit conducted by Poltegor Institute has also been presented. Good economical prognosis and utilization of CO2 in production process justify production of urea from brown coal. These issues have been discussed in the paper.
PL
W technologii podziemnego zgazowania węgla brunatnego powstają produkty uboczne mogące spowodować skażenie środowiska naturalnego. W artykule przedstawiono analizy chemiczne wody poprocesowej ze zgazowania węgla brunatnego. Przedstawiono również wyniki badań przesączalności i wymywalności fenoli w warunkach przepływu przez naturalne utwory geologiczne dla określenia możliwości ich trwałego związania i ograniczenia rozprzestrzeniania się zanieczyszczeń. Zaproponowano koncepcję technologii ograniczenia skutków skażeń wód podziemnych w procesie podziemnego zgazowania węgla brunatnego.
EN
By-products, which may contaminate natural environment, are formed in the process of underground brown coal gasification. Chemical analyses of water from brown coal gasification have been presented in the paper. Test results of phenols filterability and leachability under conditions simulating natural geological structures have been discussed in the paper. Tests were conducted in order to define possibilities of durable bonding of phenols and limitation of pollution propagation. Technological concept of limiting consequences of groundwater contamination in underground brown coal gasification process has been introduced.
PL
W artykule zaprezentowano wybrane aspekty modelowania procesu podziemnego zgazowania węgla w odniesieniu do chemizmu procesu. Omówiono czynniki limitujące stworzenie uniwersalnego modelu procesu. Przeprowadzono wstępną analizę wpływu warunków prowadzenia procesu na skład otrzymanego gazu. Przedstawiono wyniki obliczeń równowagowych procesu zgazowania węgla brunatnego z kopalni Sieniawa, które wykonano w celu określenia zakresu optymalnych warunków temperatury, ciśnienia i stosunku reagentów do otrzymania gazu bogatego w wodór.
EN
Selected aspects of underground coal gasification modeling with reference to chemical mechanism of the process are presented. Limitations of universal process model creation are reviewed. Preliminary analysis of process operation conditions influence on gas composition is given. Results of equilibrium computations of gasification process of lignite from Sieniawa deposit are given. Obtained data have been calculated in order to determine optimal parameters of temperature, pressure and reagents ratio for production of hydrogen enriched gas.
PL
W artykule omówiono wyniki procesów zgazowania węgla brunatnego ze złoża Sieniawa przeprowadzonych pod kątem wpływu warunków prowadzenia procesu na jego przebieg. Opisano dwa procesy, w modułowym reaktorze umożliwiającym odwzorowanie warunków podziemnego zgazowania badanego materiału. Procesy zgazowania prowadzono metodą cykliczną dozując naprzemiennie parę wodną i powietrze (powietrze wzbogacone w tlen). Badano wpływ czynników takich jak: procentowa zawartość tlenu w czynniku zgazowującym, jego ilość podawaną w czasie oraz długość i temperaturę początkową prowadzenia cykli para wodna/powietrze na skład otrzymanych gazów.
EN
Process conditions and their influence on gasification run, based on gasification results of lignite from Sieniawa deposit has been discussed in this article. Two experiments conducted in module reactor enabling representation of underground deposit conditions have been described. Gasification was conducted through periodical injection of steam and air (air enriched with oxygen). Factors like: amount of oxygen in air, quantity of air injected into gasifier, oxygen/air injection cycles ratio, temperature at the start of steam injection and their influence on produced gas composition were analyzed.
PL
W artykule przedstawiono ogólny opis podziemnego zgazowania węgla brunatnego z uwzględnieniem problemów zapewnienia szczelności gazogeneratora. Wykonano wstępne badania przenikalności gazów przez utwory geologiczne otaczające pokłady węgla brunatnego. Określono parametry gazoprzepuszczalności lub szczelności utworów geologicznych występujących w kopalniach węgla brunatnego.
EN
General description of underground brown coal gasification with regard to gasifier impermeability has been discussed. Preliminary tests on gas permeability in geological formations surrounding coal deposit have been conducted. Permeability parameters in brown coal mines have been defined.
PL
Polityka klimatyczna UE ulega ciągle stopniowym modyfikacjom związanym z różnym pojmowaniem ochrony klimatu przez kraje członkowskie i kosztom związanym z jej realizacją w poszczególnych krajach. Jednak jej cele są stałe: ograniczenie emisji gazów cieplarnianych do atmosfery, zmniejszenie energochłonności gospodarek oraz zwiększenie udziału energii odnawialnej. Niezależnie od ostatecznego kształtu pakietu energetyczno-klimatycznego UE branża węgla brunatnego w Polsce będzie musiała przygotować się do jego skutków. W tym celu konieczne będzie wdrożenie tzw. "czystych technologii węglowych" oraz rozszerzenie kierunków wykorzystania węgla brunatnego. W artykule dokonano przeglądu dostępnych i perspektywicznych technologii węglowych, których wdrożenie w Polsce umożliwiłoby redukcję emisji CO2. Szczególny nacisk położono na zwiększenie sprawności bloków energetycznych spalających węgiel brunatny, wychwytywanie i składowanie dwutlenku węgla oraz zgazowanie naziemne i podziemne złóż tego surowca. Wskazano także przyszłe kierunki badań nad rozwijaniem technologii najkorzystniejszych w polskich warunkach, uwzględniając przy tym względy środowiskowe, ekonomiczne i techniczne.
EN
The climatic policy of EU is being gradually modified because of different understanding of the climate protection in member countries and because of the costs related to its implementation in particular states. However its goals are constant: reduction of greenhouse gases to the atmosphere, reducing the power consumption and increasing the participation of renewable energy sources. Independently of the final form of EU's energy-climate package the brown coal industry in Poland has to prepare for its consequences. Therefore it is necessary to implement so called "clean coal technologies" and expand the directions of brown coal usage. The article describes available and perspective coal technologies that - if implemented - would allow to decrease CO2 emissions in Poland. The particular emphasis is put on: increasing the efficiency of power units running on brown coal, capture and storage of carbon dioxide as well as both underground and surface gasification of brown coal deposits. Future research directions over developing the most favorable in Polish conditions are shown, taking environmental, economical and technical considerations into account.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.