Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zdolności retencyjne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Na terenach zlewni zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, coraz częściej stosuje się zrównoważone systemy drenażu (ZSD, ang. SUDS - Sustainable Urban Drainage Systems), które umożliwiają zagospodarowanie wód opadowych możliwie jak najbliżej miejsca wystąpienia opadu. Jednym z przykładów takich rozwiązań są zielone dachy. W artykule zaprezentowano wyniki badań zdolności retencyjnych sześciu modeli zielonych dachów, oznaczonych w tekście artykułu symbolami: SHR1, SHR2, SHR3, SH, S i SR. W przypadku modeli SHR1, SHR2, SHR3 i SH zastosowano dwie warstwy substratu ekstensywnego o nazwie handlowej „Skalny kobierzec”. Dolna warstwa substratu zawierała domieszkę 0,5 % wag. hydrożelu potasowego (usieciowanego poliakrylanu potasu), natomiast górną warstwę stanowił ww. substrat bez domieszek. W przypadku modeli SHR1, SHR2, SHR3 zastosowano warstwę roślinności - rozchodnik ostry (Sedum Acre), natomiast model SH nie zawierał warstwy roślinności. Z kolei w przypadku modeli S i SR zastosowano jednolitą warstwę substratu ekstensywnego „Skalny kobierzec” bez dodatku hydrożelu, przy czym model SR posiadał warstwę roślinności (rozchodnik ostry), a model S był pozbawiony roślin. Modele SHR1 i SHR2 zostały skonstruowane w marcu 2017 r., modele SH i SHR3 w listopadzie 2017 r., a modele S i SR w kwietniu 2018 r. Badania były prowadzone z zastosowaniem opadów naturalnych oraz sztucznych (symulowanych). Na podstawie otrzymanych wyników można stwierdzić, że zastosowanie zielonych dachów może pozwolić na zmniejszenie natężenia odpływu wody opadowej ze zlewni. Uzyskane wyniki wskazują, że w większości przypadków najlepsze zdolności retencyjne wykazywały modele zielonych dachów obsadzone dobrze ukorzenioną, gęstą warstwą roślinności, które równocześnie zawierały substrat z domieszką hydrożelu (SHR1, SHR2). W niewielkim stopniu niższą zdolnością retencyjną charakteryzował się model o bardzo zbliżonej konstrukcji (SHR3), posiadający rzadszą i słabiej ukorzenioną warstwę roślinności. W większości przypadków mniejsze objętości wody były retencjonowane w warstwach pozostałych modeli: S (niezawierającego roślin ani domieszki hydrożelu), SR (zawierającego roślinność, ale niezawierającego hydrożelu) i SH (zawierającego domieszkę hydrożelu, lecz nieposiadającego warstwy roślinności). Otrzymane wyniki wskazują, że dodatek hydrożelu może wpływać pozytywnie na zdolności retencyjne dachów obsadzonych roślinnością, pod warunkiem, że okres bezdeszczowy poprzedzający opad nie będzie bardzo krótki i dach częściowo odzyska zdolność do retencjonowania wody. Na podstawie uzyskanych wyników można stwierdzić, że dodatek hydrożelu do substratu w przypadku modelu pozbawionego roślinności nie powodował znaczącego zwiększenia jego zdolności retencyjnych. Otrzymane wyniki wskazują, że dużą rolę w retencjonowaniu wody opadowej odgrywa warstwa roślinności, zwłaszcza w okresie późnej wiosny i lata, kiedy panują stosunkowo wysokie temperatury.
EN
In urbanized areas, in addition to the traditional sewer systems, increasingly are used the sustainable urban drainage systems (SUDS), inter alia, the green roofs. The focus of the research described in the article was to investigate the retention capacities of six green roof models denoted in the paper by symbols: SHR1, SHR2, SHR3, SH, S, and SR. The models were constructed with use of the plastic garden trays (with internal dimensions 55.7 × 55.7 × 7 cm). On the bottom of each tray the drainage element Floradrain FD 25 was placed. On each drainage element the filter sheet SF (70 × 70 cm) was spread. On the surface of each filter sheet the required amount of the specified substrate was placed. The total thickness of substrate layer on each model was equal. Models SHR1, SHR2, SHR3, SH were built of two layers of the extensive substrate “Sedum Carpet”. The lower layer contained the admixture of 0.5 % by weight of hydrogel (the cross-linked potassium polyacrylate). The upper layer consisted of the substrate “Sedum Carpet” without hydrogel amendment. Models SHR1, SHR2, and SHR3 contained the layer of vegetation - the goldmoss stonecrop (Sedum Acre), while model SH did not contain the plants. The models S and SR contained the uniform layer of extensive substrate “Sedum Carpet” without hydrogel amendment. The model SR contained the vegetation (the goldmoss stonecrop) and S did not contain plants. Models SHR1 and SHR2 were constructed in March 2017, models SH and SHR3 were constructed in November 2017, and models S and SR were constructed in April 2018. The investigations were conducted with use of natural and artificial (simulated) precipitations. The obtained results show that the green roofs can help to reduce the outflow of rainwater from the catchment. The results indicate that in most cases the best retention capacities had models prepared in March 2017, with dense, well-rooted plants and substrate layer amended with hydrogel (SHR1 and SHR2). The similarly constructed model (SHR3) having a less dense and less rooted vegetation layer had a slightly lower retention capacity. In most cases smaller volumes of water were stored in the layers of other models: S (substrate without hydrogel amendment and without plants), SR (substrate without hydrogel amendment + plants), and SH (substrate with hydrogel amendment and without plants). The obtained results indicate that the addition of hydrogel into the growing medium can have a positive effect on the retention capacity of vegetated roof, provided that the antecedent dry period will not be very short. On the other hand, the results show that the hydrogel amendment did not cause a significant increase in retention capacity in the case of model without plants. The obtained results indicate that the vegetation layer plays an important role in the retention of rainwater, especially in the late spring and summer, when the temperatures were relatively high.
PL
Na terenach zlewni zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, coraz częściej stosowane są zrównoważone systemy drenażu (ZSD, ang. SUDS - Sustainable Urban Drainage Systems), umożliwiające zagospodarowanie wód opadowych w miejscu wystąpienia opadu. Jednym z takich rozwiązań są zielone dachy. Artykuł prezentuje wstępne wyniki badań zdolności retencyjnych czterech modeli zielonych dachów. W przypadku modelu 1 zastosowano substrat dachowy ekstensywny bez domieszek. Modele 2 i 3 zawierały substrat ekstensywny z domieszką hydrożelu potasowego (usieciowanego poliakrylanu potasu). W przypadku modelu 2 dodatkowo zastosowano warstwę roślinności (rozchodnik ostry Sedum Acre). W modelu 4 zastosowano substrat ekstensywny z wkładkami z agrowłókniny wypełnionymi hydrożelem potasowym. Modele dachów 2, 3 i 4 zawierały taką samą dawkę hydrożelu (30 g). Badania były prowadzone w warunkach terenowych, w dwóch etapach. Wstępny etap obejmował pierwsze nasączenie modeli (wszystkie elementy w stanie powietrzno suchym) przy zastosowaniu opadu symulowanego. Drugi etap obejmował dalsze badania zdolności retencyjnych modeli, głównie z wykorzystaniem opadów naturalnych. Otrzymane wyniki wskazują, że podczas pierwszego, symulowanego opadu najlepsze zdolności retencyjne wykazywały modele 2 i 3 (z domieszką hydrożelu w stanie luźnym), natomiast najmniejsza objętość wody została zretencjonowana przez modele 1 (bez domieszki hydrożelu) i 4 (z wkładkami zawierającymi hydrożel). Wyniki drugiego etapu eksperymentu są zróżnicowane. W przypadku trzech analizowanych opadów naturalnych najlepsze zdolności retencyjne wykazywał model 2 z substratem zawierającym domieszkę hydrożelu, obsadzony roślinnością, ale w przypadku dwóch opadów większa objętość wody została zretencjonowana w warstwach modelu 4 z wkładkami z hydrożelu. Najsłabsze zdolności retencyjne, spośród modeli zawierających hydrożel w składzie substratu, wykazywał model 3 z hydrożelem w stanie luźnym, nieobsadzony roślinnością. Uzyskane wyniki wskazują na odmienne zachowanie się dodatku hydrożelu i inny przebieg cyklu pochłaniania i oddawania wody w zależności od tego, czy superabsorbent jest zastosowany w formie luźnej domieszki czy umieszczony we wkładkach. W celu dokładniejszego zbadania zachowania hydrożelu w substracie konieczne jest kontynuowanie badań, mających na celu określenie wpływu temperatury i wilgotności powietrza oraz warstwy roślinności na zachowanie dodatku hydrożelu.
EN
In urbanized areas, in addition to the traditional sewer systems, increasingly are used the sustainable urban drainage systems (SUDS), inter alia, the green roofs. The article presents the results of research of retention capacities of 4 green roof models. In these models were used: in model 1 - the typical extensive substrate, in models 2 and 3 - the above-mentioned extensive substrate with addition of hydrogel (cross-linked polyacrylate potassium), in model 4 - agrotextile inserts with hydrogel. Model 2 additionally contained the plants (Goldmoss Stonecrop Sedum Acre). Models 2, 3 and 4 contained the same portion of hydrogel (30 g). The field experiments were conducted in two stages under natural atmospheric conditions. The initial stage included the first simulated precipitation (all layers of green roof models were air-dry during these experiments). The second stage included the further investigations of the retention capacities of green roof models, predominantly with use of natural precipitations. The obtained results of initial stage of experiments show that during the first simulated precipitation the best retention capacities had models 2 and 3 (with hydrogel admixtures). The least amount of water was absorbed in model 1 (without hydrogel additive) and model 4 (containing agrotextile inserts with hydrogel). The results of the second stage of the experiment are equivocal. In the case of three natural precipitations, the best retention capacity was demonstrated by model 2, with the substrate containing hydrogel admixture planted with vegetation, but in the case of two rainfalls more water was stored in model 4, with hydrogel inserts. The least amount of water was absorbed in model 3, with hydrogel admixture, not planted with vegetation. The results show the different behavior of hydrogel and the differences in wetting-drying cycle, depending on whether the superabsorbent is used in the form of a loose admixture or placed in the inserts. Further research is needed to evaluate of influence of temperature and humidity and the presence of vegetation on behavior of hydrogel additive in the green roof substrate.
PL
Ciągle postępujące uszczelnianie powierzchni terenu zlewni zurbanizowanych przyczynia się do zwiększania natężenia spływu powierzchniowego podczas intensywnych opadów, co prowadzi do wzrostu zagrożenia powodziowego. W związku z tym na terenach silnie zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, powinny być stosowane zrównoważone systemy drenażu (SUDS - Sustainable Urban Drainage Systems). O ile to możliwe, należy dążyć do zagospodarowania wody opadowej bezpośrednio w miejscu wystąpienia opadu, co może być umożliwione między innymi przez zastosowanie zielonych dachów. Artykuł przedstawia wyniki badań zdolności retencyjnych czterech modeli zielonych dachów. W Modelu 1 zastosowano substrat intensywny „Ogród dachowy” bez domieszek. W przypadku modeli 2 i 3 na etapie konstruowania stanowiska zastosowano ww. substrat z domieszkami hydrożelu potasowego (usieciowanego poliakrylanu potasu), odpowiednio wynoszącymi około 1 i 0,25 % wagowych. W przypadku modelu 4 zastosowano ww. substrat, do którego dodano domieszki keramzytu i perlitu ogrodniczego. W modelach nie zastosowano roślinności, aby badaniu poddać wyłącznie zastosowane substraty. Symulacje opadów prowadzono po zróżnicowanych okresach bezopadowych wynoszących odpowiednio: 3, 4, 5, 7, 11 i 16 dni. Uzyskane wyniki wskazują, że po krótszych okresach bezopadowych (wynoszących od 3 do 7 dni) najlepsze zdolności retencyjne wykazywał model dachu 2 z substratem zawierającym dodatek ok. 1 % wag. hydrożelu. Z kolei w przypadku dłuższych okresów bezopadowych model 2 nie wykazywał już tak dobrych zdolności retencyjnych. W trakcie opadów symulowanych po 11 i 16 dniach bezopadowych najlepsze zdolności retencyjne wykazywały modele 1 i 3 (odpowiednio z substratem bez żadnych dodatków i z dodatkiem ok. 0,25 % wag. hydrożelu). Najsłabsze zdolności retencyjne wykazywał model 4 - z substratem zawierającym domieszki keramzytu i perlitu ogrodniczego.
EN
Persistent sealing of drainage basin surface in urbanized areas prompts the rise of runoff intensity during heavy rains. This leads to an increase of threat of flood. In this regard, in addition to the traditional sewer systems should be used the Sustainable Urban Drainage Systems (SUDS). SUDS comprise, inter alia, managing the rain close to where it falls. The examples of SUDS can be green roofs. The article presents the results of research of retention capacities of 4 green roof models. As the growing media in the green roof models were used following substrates: in model 1 - the typical intensive substrate (“Roof Garden”), in model 2 - the same substrate with admixture of about 1 % by weight of hydrogel (cross-linked potassium polyacrylate), in model 3 - the same substrate with admixture of 0.25 % by weight of hydrogel, and in model 4 - the a.m. substrate with admixture of expanded clay and perlite. There are not the vegetation layers on the models because the focus of the experiments was to investigate of the retention capacities solely of the substrates. The artificial precipitations were simulated after: 3, 4, 5, 7, 11, and 16 antecedent dry days. The results indicate that during the precipitations that occurred after shorter antecedent dry periods (from 3 to 7 days) the best retention capacities had model 2 containing the substrate with admixture of about 1 % by weight of hydrogel. By contrast, during the precipitations that occurred after longer antecedent dry periods (11 or 16 days) the best retention capacities had models 1 and 3 (with substrate without any admixtures and with substrate containing about 0.25 % by weight of hydrogel). Results show that the weakest retention capacity had model 4 - with substrate containing admixtures of expanded clay and perlite. It should be pointed out that the effectiveness of hydrogel decreased compared to results obtained during the earlier studies.
4
Content available remote Ocena ilości i dynamiki odpływu z ekstensywnych dachów zielonych
PL
W miastach duży udział powierzchni nieprzepuszczalnych stanowią dachy. Wykonanie na nich układów konstrukcyjnych z roślinnością, czyli tzw. dachów zielonych jest jedną z metod odzyskiwania terenów biologicznie czynnych w przestrzeni miejskiej. Ponadto taki sposób zagospodarowania, uprzednio uszczelnionych powierzchni, może zredukować odpływ wód opadowych do systemu kanalizacji. W artykule przedstawiono wyniki badań zdolności ekstensywnych dachów zielonych w retencjonowaniu, opóźnianiu spływu i redukcji szczytowej fali odpływu wód opadowych. Badania prowadzono w centrum miasta Wrocławia na stanowiskach wykonanych w skali półtechnicznej. Uzyskane wyniki potwierdzają pozytywny wpływ dachów roślinnych na zatrzymywanie wody opadowej oraz opóźnianie odpływu. Średnia retencja na obu dachach zielonych wynosiła ponad 87% i była ponad czterokrotnie większa niż na dachu referencyjnym. Ponadto, zaobserwowano wyraźne opóźnienie odpływu z dachów zielonych (średnio o 75 min. pomiędzy maksymalną intensywnością opadu, a szczytową fazą odpływu). Stwierdzono wpływ sezonu i długości trwania okresu bezopadowego na zdolności retencyjne dachów zielonych. Długość trwania okresu bezopadowego był czynnikiem, który miał zauważalny wpływ także na wielkość redukcji szczytowej fali odpływu.
EN
Roofs have a high share in non-permeable surfaces in urban areas. Covering them with structural arrangements with greenery, i.e. so called green roofs is one of the ways to recover biologically active areas in cities. Additionally, such management of previously sealed surfaces may reduce the runoff of stormwater to the sewage system. The paper presents the results research of the capacity of extensive green roofs to retain, delay runoff and reduce peak runoff of stormwater. The research were conducted in the centre of Wrocław, on experimental sites constructed in a semi-technological scale. The obtained results confirm that green roofs have a positive influence on stormwater retention and runoff delay. The mean retention on both green roofs exceeded 87% and it was over four times higher than on the reference roof. Moreover, a noticeable delay in runoff from green roofs was noted (on the average 75 minutes between peak rainfall intensity and the peak runoff phase). It was determined that the season and the antecedent dry weather period influenced the retention capacity of green roofs. The antecedent dry weather period also has an influence on peak runoff reduction.
PL
Postępujący rozwój i urbanizacja wpływają na kształtowanie odpływu wód opadowych ze zlewni. Wzrost stopnia uszczelnienia powierzchni powoduje zwiększanie natężenia spływu powierzchniowego, co często przyczynia się do podwyższenia zagrożenia powodziowego. W związku z tym na terenach silnie zurbanizowanych, obok tradycyjnych systemów kanalizacji deszczowej, coraz częściej stosuje się rozwiązania mające na celu zagospodarowanie wód deszczowych w miejscu wystąpienia opadu. Rozwiązania te noszą nazwę zrównoważonych systemów drenażu. Jednym z takich rozwiązań są zielone dachy. W artykule przedstawiono wyniki badań zdolności retencyjnych czterech modeli zielonych dachów, na których zastosowano zróżnicowane substraty dachowe. Jedno podłoże glebowe stanowił tradycyjny substrat dachowy bez domieszek, dwa podłoża stanowiły substraty z domieszkami hydrożelu, odpowiednio wynoszącymi około 1 i 0,25% wagowych. Jako czwarte podłoże zastosowano substrat dachowy z domieszką keramzytu i perlitu ogrodniczego. Na modelach zielonych dachów nie zastosowano roślinności, aby badania dotyczyły wyłącznie zdolności retencyjnych zastosowanych substratów. Pierwsza część eksperymentu opisanego w artykule polegała na badaniu zdolności retencyjnych substratów dachowych podczas pierwszego symulowanego opadu oraz opadu występującego po długim okresie bezdeszczowym (substrat i inne elementy modelu zielonego dachu w stanie powietrzno suchym). W tym przypadku najlepsze zdolności retencyjne wykazał substrat z zawartością ok. 1% hydrożelu. Drugą co do wartości pojemnością retencyjną odznaczał się substrat zawierający ok. 0,25% wag. hydrożelu. Z kolei najsłabsze zdolności retencyjne posiadał substrat z dodatkiem materiałów silnie porowatych (keramzytu i perlitu ogrodniczego). Druga część eksperymentu polegała na badaniu zdolności retencyjnych substratów podczas opadu, jaki wystąpił po okresie bezdeszczowym, wynoszącym 4 doby. Otrzymane wyniki wskazują, że w tym przypadku najlepsze zdolności retencyjne wykazał substrat zawierający ok. 0,25% hydrożelu, drugą co do wartości chłonność posiadał substrat z dodatkiem i keramzytu, i perlitu ogrodniczego, trzecią co do wartości chłonność wykazywał substrat bez żadnych dodatków. Najsłabszą chłonność w tym przypadku posiadał substrat z dodatkiem około 1% hydrożelu.
EN
Progressive economic development and urbanisation influence the characteristics of the stormwater runoff. Persistent sealing of drainage basin surface prompts the rise of runoff intensity. This results in a rise of threat of flood. Therefore, in urbanized areas in addition to the traditional sewer systems are used the ecological sustainable urban drainage systems (SUDS). One of these solutions are the green roofs. The paper presents the results of investigation of retention capacities of 4 green roof models with following substrates: the typical green roof substrate, the substrate with addition of about 1% of hydrogel, the substrate with addition of about 0.25% of hydrogel, the substrate with addition of expanded clay and perlite. In the models weren’t applied the vegetation layers in order to explore only the retention capacities of substrates and drainage layers. The objective of the first part of experiment described in the paper was to investigate the retention capacities of roof substrates during the first rain and the rain that occurred after long antecedent dry period of time (the substrates and drainage layers Badanie wpływu hydrożelu na zdolności retencyjne zielonych dachów 633 were air-dry). The best retention capacity had in this case the substrate with addition of about 1% of hydrogel. The second largest retention capacity had the substrate with addition of about 0.25% of hydrogel. The weakest retention capacity had the substrate with addition of expanded clay and perlite. The objective of second part of experiment was to investigate the retention capacities of green roof substrates after 4 antecedent dry days. In this case the best retention capacity had the substrate with addition of about 0.25% of hydrogel. The second largest retention capacity had the substrate with addition of expanded clay and perlite. The weakest retention capacity had the substrate with addition of about 1% of hydrogel.
PL
Puszcza Zielonka położona jest w środkowej części dorzecza Warty, w centralnej części Wielkopolski, jej zachodnia granica znajduje się około 5 km na północny-wschód od granic Poznania. Na podstawie wyników badań można sformułować pewne wnioski generalne: zalesienie terenu znacznie redukuje odpływ o około 40 % oraz podwyższa ewapotranspirację o około 10 %, jakość wód w leśnych ciekach jest dobra (I klasa czystości), jedynie w miesiącach letnich i jesiennych odnotowuje się małe zawartości tlenu rozpuszczonego oraz duże ilości fosforanów (uwalnianie się rozpuszczalnych związków fosforu w warunkach anaerobowych). Nieklimatyczne parametry fizjograficzne wpływają na retencję jedynie w sposób modyfikujący niemniej istotny, można powiedzieć iż określają potencjalne zdolności retencyjne. Biorąc pod uwagę powyższe, opracowano oryginalną metodę oceny wskaźnika potencjalnych zdolności retencyjnych dla obszarów zalesionych Puszczy Zielonka, której istota sprowadza się do przypisania każdej elementarnej powierzchni (kwadratowe płaty o bokach po 0,5 km) - rastrowi jednego parametru -wskaźnika potencjalnej zdolności retencyjnej. Uwzględnia on sumaryczne oddziaływanie 8 parametrów: spadek terenu, miąższość gruntów, współczynnik filtracji gleb, odległość od sieci cieków, odległość od wód stojących, dominujące siedlisko leśne, dominujący skład gatunkowy oraz dominujące klasy wieku drzewostanów. W aspekcie lokalizacji kategorii obszarów o małych i dużych potencjalnych zdolnościach retencyjnych występują następujące prawidłowości: obszary o małych potencjalnych zdolnościach retencyjnych pokrywają się z fragmentami Puszczy Zielonka, gdzie dokonano zalesień gruntów porolnych. Występują tam na ogół lite drzewostany sosnowe młodszych klas wieku na słabszych siedliskach leśnych. Obszary o dużych potencjalnych zdolnościach retencyjnych obecne są przeważnie na tych fragmentach Puszczy Zielonka, gdzie występują drzewostany dębowe i bukowe starszych klas wieku na siedliskach żyznych.
EN
The Zielonka Forest is located in the mid-part of the Warta river basin, in thc central part of Wielkopolska region in Poland, and its western borders extends about 5 kilometers north-east of Poznań. Some general conclusions can be drawn on the basis of the imestigation results: forested area significantly affects outflow and evaporation (reduction by ca 40 % and increase by 10 % respectively). The quality of water in the forest rivers is good (purity class I) only in the summer and autumn months low content of dissohed oxygen and high quantities of phosphates are observed (release of soluble phosphorus compounds in anaerobic conditions). Non-climatical, physiographical parameters influence water storage capacity in a modifying manner only, nevertheless essential. We can say that they quality potential water storage conditions. Working from the above-mentioned premises, the original method of potential water storage coefficient estimation for the Zielonka Forest nas been formulated. The idea of the method is as follows - for each elementary area (a square cell of 0.5 km side) exclusive potential water storage coefficient is assigned. This coefficient focuses converging influence of 8 parameters: area slope, soil thickness, infiltration coefficient of soil, distance from watercourse network, distance from pond and lake network, dominant forest site, dominant species of species composition and dominant class of tree stand age. As far as categories of small and large potential water storage coefficient are concerned following distribution regularities are obsened - the areas of smali potential water storage capabilities agree with these parts of the Zielonka Forest where afforestation of farmland was performed. The areas, as a rule, consist of Scotch pine (Pinus silvestris) monoculture stands of younger age classes on poorer forest sites; the areas of large potential water storage capabilities are largely present in these parts of the Zielonka Forest, where older class age Common oak (Quercus robur) and Red beech (Fagus silvatica) stands occur on fertilc forest sites.
7
Content available remote Hydrologiczne skutki przebiegu tras komunikacyjnych
PL
Budowa dróg w sposów istotny wpływa na kształtowanie się stosunków wodnych w obrębie zlewni oraz powoduje obniżenie jej zdolności retencyjnych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.