Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zbiór poziomicowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Brain hemorrhage is the first cause of death in ages between 15 and 24, and the third after heart diseases and cancers in other ages. Saving the lives of such patients completely depends on detecting the correct location and type of the hemorrhage in an early stage. In this paper, an automatic brain hemorrhage detection and classification algorithm on CT images is proposed. To achieve this purpose, after preprocessing, a modified version of Distance Regularized Level Set Evolution (MDRLSE) is used to detect and separate the hemorrhage regions. Then a perfect set of shape and texture features from each detected hemorrhage region are extracted. Moreover, we define a synthetic feature that is called weighted grayscale histogram feature. In this feature, valuable information from shape, position and area of the hemorrhage are integrated with the grayscale histogram of hemorrhage region. After that a synthetic feature selection algorithm is applied to select the most convenient features. Eventually, the seg- mented regions are classified into four types of the hemorrhages such as EDH, ICH, SDH and IVH by a hierarchical structure of classification. Our proposed algorithm is evaluated on a perfect set of CT-scan images and obtains the accuracy rate of 96.15%, 95.96% and 94.87% for the segmentation of the EDH, ICH, and SDH types, respectively. Also our proposed classification structure provides the accuracy rate of 92.46% and 94.13% for the first and second classifiers of the hierarchical classification structure for classifying the IVH from normal class and the EDH, ICH and SDH hemorrhage classes, respectively.
EN
Segmentation is the art of partitioning an image into different regions where each one has some degree of uniformity in its feature space. A number of methods have been proposed and blind segmentation is one of them. It uses intrinsic image features, such as pixel intensity, color components and texture. However, some virtues, like poor contrast, noise and occlusion, can weaken the procedure. To overcome them, prior knowledge of the object of interest has to be incorporated in a top-down procedure for segmentation. Consequently, in this work, a novel integrated algorithm is proposed combining bottom-up (blind) and top-down (including shape prior) techniques. First, a color space transformation is performed. Then, an energy function (based on nonlinear diffusion of color components and directional derivatives) is defined. Next, signeddistance functions are generated from different shapes of the object of interest. Finally, a variational framework (based on the level set) is employed to minimize the energy function. The experimental results demonstrate a good performance of the proposed method compared with others and show its robustness in the presence of noise and occlusion. The proposed algorithm is applicable in outdoor and medical image segmentation and also in optical character recognition (OCR).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.