Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 551

Liczba wyników na stronie
first rewind previous Strona / 28 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wodór
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 28 next fast forward last
PL
Stałotlenkowe ogniwa elektrochemiczne (SOC) są jedną z najbardziej innowacyjnych technologii, która może odegrać istotną rolę w obszarze elektroenergetyki, w przemyśle energochłonnym oraz w rozproszonych systemach generacji energii elektrycznej i ciepła. Urządzenia te mogą pracować w trybie elektrolizera lub w trybie ogniwa paliwowego. Zależnie od sposobu ich wykorzystania stanowią one rozwiązanie do elektrochemicznego rozkładu wody (pary wodnej) na tlen i wodór lub umożliwiają konwersję paliw różnego typu do energii elektrycznej wraz z produkcją ciepła odpadowego o walorach użytkowych. Technologia ta jest rozwijana w Polsce od blisko 20 lat. Jak dotąd w Polsce powstało kilka instalacji z ogniwami SOC, które pracują w trybie: elektrolizera, ogniwa paliwowego jak i w trybie pracy rewersyjnej jako magazyn energii. W artykule omówiono: podstawy teoretyczne, ogólną specyfikację technologii oraz jej potencjał wraz z przykładami instalacji, za których projekt, dostawę i eksploatację odpowiadał zespół Instytutu Energetyki - Państwowy Instytut Badawczy.
EN
Solid oxide electrochemical cells (SOCs) are one of the most innovative technologies which can play a key role in power sector, energy-intensive industries, and distributed systems which produce electricity and heat. Systems based on SOCs can operated either in electrolysis or fuel cell mode. In the first one, they can be used to split water into oxygen and hydrogen. In the second mode, generation of electricity and heat is possible when SOCs are fed by fuel. Poland has been pioneering solid oxide cells for 20 years. Up to date, several systems with SOCs operated in fuel cell mode (SOFC) and in electrolysis mode (SOE), were delivered. Additionally, system with the functionality to operated as reversible system (rSOC) used for energy storage was designed, built and operated. The article summarizes theoretical background of the technology, typical specification of systems and their potential in various sectors. Units which are discussed in the paper were delivered by the Institute of Power Engineering - National Research Institute.
PL
Polska jako trzeci (po Niemczech i Niderlandach) producent szarego wodoru w Europie ma kompetencje do ambitnej transformacji energetycznej z wykorzystaniem zielonego wodoru. Zielony wodór może wspierać elastyczność sieci elektroenergetycznych poprzez magazynowanie nadwyżki energii elektrycznej z OZE. Istotne jest zbadanie krajowych możliwości wielkoskalowego magazynowania wodoru w podziemnych strukturach geologicznych. Przedstawiono wyniki badań termodynamicznych nad zjawiskami zachodzącymi w dojrzałym złożu gazu kondensatowego podczas wprowadzania doń wodoru w celu magazynowania. Analizowano diagram fazowy, punkty rosy oraz krzywe kondensacji frakcji węglowodorowych. Badania te przyczyniają się do zrozumienia wpływu wodoru na parametry gazów węglowodorowych w złożu i pomogą w rozwijaniu efektywnych rozwiązań w zakresie magazynowania energii odnawialnej.
EN
Condensate gas contg. 75 mole % of MeH and subsequent hydrocarbon fractions were modeled. The gas mixing process was carried out using PVTsim software. The simulations were performed based on the SoaveRedlich-Kwong gas equation of state. The phase diagram, dew points and condensation curves of hydrocarbon fractions were analyzed. This research contributes to understanding the impact of H₂ on hydrocarbon gas parameters and will help in developing effective solns. for storing renewable energy.
3
Content available Advanced fuel system with gaseous hydrogen additives
EN
The advancement of contemporary internal combustion engine technologies necessitates not only design enhancements but also the exploration of alternative fuels or fuel catalysts. These endeavors are integral to curbing the emission of hazardous substances in exhaust gases. Most contemporary catalyst additives are of complex chemical origins, introduced into the fuel during the fuel preparation stage. Nonetheless, none of these additives yield a significant reduction in fuel consumption. The research endeavors to develop the fuel system of a primary marine diesel engine to facilitate the incorporation of pure hydrogen additives into diesel fuel. Notably, this study introduces a pioneering approach, employing compressed gaseous hydrogen up to 5 MPa as an additive to the principal diesel fuel. This method obviates the need for extensive modifications to the ship engine fuel equipment and is adaptable to modern marine power plants. With the introduction of modest quantities of hydrogen into the primary fuel, observable shifts in the behavior of the fuel equipment become apparent, aligning with the calculations outlined in the methodology. The innovative outcomes of the experimental study affirm that the mass consumption of hydrogen is contingent upon the hydrogen supply pressure, the settings of the fuel equipment, and the structural attributes of the fuel delivery system. The modulation of engine load exerts a particularly pronounced influence on the mass admixture of hydrogen. The proportion of mass addition of hydrogen in relation to the pressure of supply (ranging from 4–12 MPa) adheres to a geometric progression (within the range of 0.04–0.1%). The application of this technology allows for a reduction in the specific fuel consumption of the engine by 2–5%, contingent upon the type of fuel system in use, and concurrently permits an augmentation in engine power by up to 5%. The resultant economic benefits are estimated at 1.5–4.2% of the total fuel expenses. This technology is applicable across marine, automotive, tractor, and stationary diesel engines. Its implementation necessitates no intricate modifications to the engine design, and its utilization demands no specialized skills. It is worth noting that, in addition to hydrogen, other combustible gases can be employed.
PL
W rozdziale przedstawiono przykłady inwestycji w technologie wodorowe w Polsce. Przedstawiono wyniki analizy energetycznej układu farma fotowoltaiczna–elektrolizer do produkcji czystego, zielonego wodoru. Zdefiniowano wzór na czas wykorzystania mocy zainstalowanej elektrolizera zasilanego z farmy PV oraz wyznaczono jego wartość. Przedstawiono profil produkcji energii elektrycznej przez farmę PV. Obliczenia wykonano na podstawie danych nasłonecznienia dla lokalizacji miasta Poznania. Przytoczono wzór na wartość mocy generowanej przez farmę PV oraz wzory pozwalające określić roczną wartość masy wyprodukowanego wodoru. Przebadano wpływ wartości stosunku mocy elektrolizera do mocy farmy fotowoltaicznej (PEL/PPV) na wartość czasu wykorzystania jego mocy zainstalowanej. Wyniki analizy przedstawiono w formie graficznej za pomocą charakterystyki PEL/PPV = f(TEL). Zaproponowano metodologię doboru mocy i pojemności baterii elektrochemicznej w celu zwiększenia produkcji wodoru.
EN
The chapter presents examples of investments in hydrogen technologies in Poland. The results of the energy analysis of the photovoltaic farm-electrolyser system for the production of pure, green hydrogen are presented. The formula for the use of the installed power of the electrolyser supplied from a PV farm was defined and its value was determined. The profile of electricity production by a PV farm was presented. The calculations were made on the basis of insolation data for the city of Poznań. The formula for the value of the power generated by the PV farm and the formulas allowing to determine the annual value of the mass of produced hydrogen were presented. The influence of the ratio of the electrolyser power to the power of a photovoltaic farm (PEL/PPV) on the value of the utilization time of its installed power was investigated. The results of the analysis are presented graphically by means of the PEL/PPV = f(TEL) characteristic. A methodology for selecting the power and capacity of an electrochemical battery was proposed to increase hydrogen production.
PL
Wodór będzie stanowił ważny element w procesie transformacji energetycznej, jako ogniwo łączące odnawialne źródła energii z wieloma gałęziami gospodarki – od paliw dla transportu, poprzez procesy przemysłowe, aż do generacji energii elektrycznej i ciepła. Instalacje pracujące na pokrycie lokalnego zapotrzebowania na paliwo, z wykorzystaniem pobliskich źródeł, zwiększą bezpieczeństwo energetyczne regionów i ułatwią dekarbonizację wielu sektorów, zgodnie z założeniami Pakietu Klimatycznego oraz aktualnym planem RePowerEU. Wodór stanowić może także element bilansujący dla stabilnej pracy systemu elektroenergetycznego. Droga do rozwoju gospodarki wodorowej wymaga natomiast wypracowania standardów, optymalizacji rozwiązań technicznych, budowania łańcucha dostaw oraz wprowadzenia stabilnego otoczenia prawnego. Niniejszy rozdział podsumowuje kluczowe cechy nośnika energii, jakim jest wodór, najważniejsze technologie jego produkcji i wykorzystania oraz ich potencjalny wpływ na rynek energii. Opisano również warianty zastosowania paliwa rozpatrywane przy budowaniu gospodarki wodorowej i jej rolę w procesie transformacji energetycznej, które stanowią o potencjale technologii i uzasadniają podejmowane działania. Polska obecnie produkuje około 1 mln ton wodoru rocznie, głównie poprzez reforming parowy gazu ziemnego. Posiadane doświadczenia w tym zakresie powalają nam na podejmowanie działań związanych z dekarbonizacją istniejących źródeł wytwórczych oraz rozwój nowych źródeł zeroemisyjnych. Obecny proces tworzenia się nowego rynku opartego na wykorzystaniu nisko- i bezemisyjnego wodoru sprzyja powstawaniu wielu ciekawych inicjatyw, w tym struktur nazwanych Dolinami Wodorowymi. W rozdziale opisano aktywne podmioty i wybrane projekty realizowane aktualnie w Polsce. Podjęto także temat założeń Polskiej Strategii Wodorowej – opisano główne cele, które ona wyznacza, a także zagadnienia związane z trwającymi zmianami legislacyjnymi. Podsumowanie zawiera wnioski wyciągnięte z realizacji pierwszych projektów wodorowych w Polsce przez firmę SBB ENERGY SA.
EN
Hydrogen will be an important element in the energy transition, as a link between renewable energy sources and many sectors of the economy – from fuels for transportation to industrial processes to electricity generation and heat. Installations working to meet local fuel needs, using neighbouring sources, will increase regional energy security and facilitate the decarbonization of many sectors, in line with the Climate Package and the current RePowerEU plan. Hydrogen can also provide a balancing element for the stable operation of the electric power system. However, the road to the growth of the hydrogen economy requires the development of standards, the optimization of technical solutions, the building of a supply chain and the introduction of a stable legal environment. This chapter summarizes the key features of the hydrogen energy carrier, the most important technologies for its production and use, and their potential impact on the energy market. It also describes the fuel application variants considered in building a hydrogen economy and its role in the energy transition process, which represent the potential of the technology and justify the actions being taken. Poland currently produces about 1 million tons of hydrogen per year, mainly through steam reforming of natural gas. The experience we have in this area allows us to take steps to decarbonize existing generation sources and develop new zero-carbon production sources. The current process of creating a new market based on the use of low- and zero-emission hydrogen is fostering the formation of many interesting initiatives, including structures called Hydrogen Valleys. The chapter describes active players and selected projects currently underway in Poland. The assumptions of the Polish Hydrogen Strategy are also addressed – the main goals it sets are described, as well as issues related to ongoing legislative changes. The summary includes lessons learned from the implementation of the first hydrogen projects in Poland by SBB ENERGY SA.
6
Content available Polska Strategia wodorowa. Rola dolin wodorowych
PL
W lipcu 2020 r. Komisja Europejska ogłosiła Strategię w zakresie wodoru na rzecz Europy neutralnej dla klimatu. Wskazała wodór jako kluczowy priorytet służący osiągnięciu Europejskiego Zielonego Ładu. Gaz ten może być zarówno surowcem, paliwem, jak i nośnikiem i magazynem energii. Komisja wskazała, iż wodór może również zastępować paliwa kopalne w niektórych wysokoemisyjnych procesach przemysłowych. Tworzące się doliny wodoworowe będą bazować na lokalnym popycie i rozwijać się, dzięki miejscowej producji tego gazu, który będzie produkowany lokalnie ze źródeł odnawialnych i transportowany na niewielkie odległości. W grudniu 2021 r. ogłoszono Polską strategię wodorową do roku 2030 z perspektywą do roku 2040 r., określającej ramy wdrażania gospodarki wodorowej w Polsce. W rozdziale przedstawiono najważniejsze założenia polskiej i europejskiej strategii wodorowej oraz zaprezentowano podstawowe informacje na temat tworzących się w Polsce dolin wodorowych. Doliny te mają pełnić istotną rolę w rozwoju gospodarki wodorowej. Zgodnie z założeniami Strategii ma ich powstać co najmniej pięć. W tworzeniu tych dolin miała udział także Agencja Rozwoju Przemysłu SA.
EN
In July 2020, the European Commission announced the Hydrogen Strategy for a climate-neutral Europe. It identified hydrogen as a key priority to achieve the European Green Deal. This gas can be uses as a raw material, a fuel as well as a carrier and storage of energy. The Commission has indicated that hydrogen can also replace fossil fuels in some carbon-intensive industrial processes. The emerging hydrogen valleys will be based on local demand and developed thanks to the local production of this gas, which will be produced locally from renewable sources and transported over short distances, will be expanded. In December 2021, the Polish hydrogen strategy until 2030 with an outlook until 2040 was announced, setting the framework for the implementation of the hydrogen economy in Poland. The chapter presents the most important assumptions of the both Polish and European hydrogen strategy and basic information on hydrogen valleys that are being created in Poland. These valleys should play an important role in the development of the hydrogen economy. According to the assumptions of the Strategy, at least five of them are to be created. The Industrial Development Agency JSC also participated in the creation of these valleys.
PL
W ostatnich latach zwiększający się popyt na alternatywne źródła energii, jak również coraz ostrzejsze wymogi dotyczące redukcji emisji gazów cieplarnianych, skłoniły do rozważań na temat roli wodoru jako potencjalnego nośnika energii. Wodór może być wykorzystywany jako czyste źródło energii, a także jako zielony nośnik energii pochodzącej z odnawialnych źródeł. Jednakże, aby wodór mógł stać się szeroko wykorzystywanym nośnikiem energii, należy opracować skuteczne metody jego transportu. Jednym z możliwych sposobów transportu wodoru jest przesył rurociągowy. Transport wodoru rurociągami ma kilka zalet, w tym możliwość przesyłania dużych ilości wodoru na duże odległości, niskie koszty transportu w porównaniu z transportem drogowym lub kolejowym, a także niski wpływ na środowisko. Niemniej jednak, istnieją również pewne wyzwania związane z rurociągowym transportem wodoru, w tym problemy z bezpieczeństwem, granicą wybuchowości oraz monitoringiem parametrów jakościowych.
EN
In recent years, the increasing demand for alternative energy sources, as well as increasingly stringent requirements for reducing greenhouse gas emissions, have prompted consideration of the role of hydrogen as a potential energy carrier. Hydrogen can be used as a clean energy source as well as a green energy carrier from renewable sources. However, in order for hydrogen to become a widely used energy carrier,effective methods of its transport must be developed. One of the possible ways of transporting hydrogen is pipeline transport. Transporting hydrogen by pipeline has several advantages, including the ability to transport large amounts of hydrogen over long distances, low transport costs compared to road or rail transport, and low environmental impact. Nevertheless, there are also some challenges related to the pipeline transport of hydrogen, including problems with safety, explosive limits and monitoring of quality parameters.
9
Content available remote Katalityczna piroliza metanu – sposób na niskoemisyjną produkcję wodoru
PL
W 2020 roku Komisja Europejska opublikowała komunikat zatytułowany Strategia w zakresie wodoru na rzecz Europy neutralnej dla klimatu [1]. Dokument ten jest strategicznym planem działania, zawierającym kompleksowe podejście dotyczące transformacji europejskiej gospodarki z opartej na paliwach kopalnianych na nowoczesną, bezemisyjną, opartą na wodorze. Strategia została opracowana przy udziale państw członkowskich i obejmuje cele, jakie państwa członkowskie powinny osiągnąć. Jednym z nich jest niskoemisyjna produkcja wodoru w nowych instalacjach. Jest to cel szczególnie interesujący dla środowiska naukowców, ale również dla innowacyjnych przedsiębiorców.
EN
In 2020, the European Commission published a communication: "Hydrogen Strategy for a Climate Neutral Europe" [1]. The document is a strategic roadmap with a comprehensive approach to transforming Europe's economy from one based on fossil fuels to a modern, zero-carbon, hydrogen-based one. The strategy was developed with the participation of member states and includes goals that member states should achieve. One of them is low-carbon hydrogen production in new installations. This is a goal of particular interest to the scientific community, but also to innovative entrepreneurs.
EN
This paper considers a promising method of enhancing the effectiveness of diesel engines. This method uses the addition of hydrogen in a small amount (up to 2% by mass). The hydrogen additive is added to the high-pressure fuel line before the injector. Based on the experimental findings, a reduction in the engine’s specific fuel consumption of up to 3% was achieved in comparison to the baseline configuration. A research study was conducted at the Admiral Makarov National University of Shipbuilding using a newly established experimental setup to assess the impact of hydrogen additives on primary fuel delivery, spray characteristics, and overall engine performance. Among the experiments conducted, one investigated fuel atomization parameters, focusing on how the presence of hydrogen in the fuel influenced the fuel jet’s characteristics. A high-speed camera with a high resolution was used to record the optical-graphic study to isolate and extract individual shots of the torch’s expansion, thus obtaining images devoid of ignition and flickering. After conducting image processing and constructing jet models, along with subsequent analysis, it becomes apparent that the addition of hydrogen to the primary fuel results in an enhancement of spray quality. The torch volume expanded by approximately 10% to 15%, while the jet length diminished by approximately 8% to 10%. Consequently, the average diameter of the atomized fuel droplets decreases by up to 10%, with the extent of reduction contingent upon the initial parameters and configurations.
PL
Odnawialne źródła energii oraz tzw. zielony wodór, zgodnie z planem UE, odegrają główną rolę w dekarbonizacji gospodarki. Obecnie zdecydowana większość wodoru, zarówno w Polsce, UE, jak i na świecie produkowana jest w oparciu o paliwa kopalne, głównie gaz ziemny. Taka produkcja wodoru obciążona jest emisją CO2. Dlatego też głównym celem unijnej strategii wodorowej jest rozwój odnawialnego, zielonego wodoru otrzymywanego w procesie elektrolizy przy wykorzystaniu OZE. W artykule przybliżono rozwój wykorzystania OZE w zakresie produkcji energii elektrycznej w latach 2015-2022, zwrócono uwagę na wysoką dynamikę rozwoju fotowoltaiki i jej rosnący udział w bilansie wytwarzania energii elektrycznej. W dalszej części scharakteryzowano technologie magazynowania wodoru w kontekście rozwoju gospodarki wodorowej, ze szczególnym uwzględnieniem magazynowania wodoru w kawernach solnych. Przybliżono doświadczenia z USA i Wielkiej Brytanii w zakresie wykorzystania kawern solnych do magazynowania wodoru. Rozwój technologii magazynowania wodoru jest niezbędny nie tylko dla wykorzystania wodoru w ważnych gałęziach gospodarki, jak m.in. ciepłownictwo i transport, ale także dla zagospodarowania nadwyżek energii z OZE. Podkreślono istnienie korzystnych warunków geologicznych w Polsce do budowy wielkoskalowych magazynów wodoru w kawernach solnych.
EN
According to the European Union plan, renewable energy sources and green hydrogen will play a major role in decarbonizing the economy. Currently, the vast majority of hydrogen in Poland, the EU and around the world, is produced based on fossil fuels, mainly natural gas. Unfortunately this hydrogen production is burdened with C02 emissions. Therefore, the main objective of the EU hydrogen strategy is to develop renewable green hydrogen obtained by electrolysis using RES. The article presents the development of the use of RES for electricity generation in 2015-2022, noting the high dynamics of photovoltaic development and its growing share in the balance of electricity generation. In the following part, hydrogen storage technologies were characterized in the context of the development of the hydrogen economy, with particular attention to the storage of hydrogen in salt caverns. Experiences from the US and the UK in the use of salt caverns for hydrogen storage are outlined. The development of hydrogen storage technology is essential not only for the use of hydrogen in important industries, such as heating and transportation, among others, but also for the development of surplus energy from RES. The existence of favorable geological conditions in Poland for the construction of large-scale hydrogen storage in salt caverns was emphasized.
PL
Energetyka wodorowa to sektor rozwijający się bardzo dynamicznie w ostatnich latach. Wzrost emisji szkodliwych substancji emitowanych do atmosfery przyczynił się do realizacji zielonej transformacji mającej na celu zapobiegać negatywnym skutkom środowiskowym. W artykule przedstawiono najważniejsze punkty strategii wodorowej w Polsce oraz w wybranych krajach europejskich. Wodór jako paliwo przyszłości ma bardzo duży potencjał energetyczny, a głównym czynnikiem ograniczającym są nie ujednolicone regulacje prawne dotyczące jego produkcji, magazynowania i dalszego wykorzystania.
EN
Hydrogen energy is a sector that has been growing rapidly in recent years. The increase in emissions of harmful substances emitted into the atmosphere has contributed to the realization of a green transformation aimed at preventing negative environmental effects. The article presents the highlights of the hydrogen strategy in Poland and in selected European countries. Hydrogen as a fuel of the future has a very high energy potential, and the main limiting factor is the non—unified legal legislation on its production, storage and further use.
PL
W artykule zaprezentowano porównanie nowoczesnych systemów energetycznych zasilanych wodorem. Skupiono się na analizie nowoczesnej elektrowni gazowo – parowej oraz obiegu Graz. W przypadku elektrowni gazowo – parowej doprowadzony do turbiny gazowej wodór ulegał spaleniu klasycznie w powietrzu, natomiast w układzie Graz wodór spalano w atmosferze czystego tlenu. Wariantem referencyjnym w analizie jest blok gazowo – parowy zasilany 100% gazem ziemnym. Przedstawiono i scharakteryzowano struktury analizowanych układów oraz główne założenia. Omówiono metodologie oceny pracy systemów energetycznych. Porównano osiągane moce, sprawności oraz poziomy emisji jednostkowej CO2 badanych układów. Analizowane układy charakteryzowały się wysoką sprawnością rzędu 60%. W przypadku układu Graz istnieje możliwość zwiększenia sprawności poprzez podniesienie relatywnie niskiej wartości temperatury COT. Ponadto przedstawione układy zasilane paliwem wodorowym wykazywały się niską lub zerową emisją CO2.
EN
The paper presents a comparison of modern energy systems powered by hydrogen. The work Focus on the analysis of a modern combined cycle power plant and the Graz cycle. In the case of the combined cycle power plant, hydrogen fed to the gas turbine was combusted in the air, while in the Graz system, hydrogen was burned in an atmosphere of pure oxygen. The reference case in the analysis is a combined cycle power plapowered by 100% natural gas. The structures of the analyzed systems and the main assumptions were present and characterized. Methodologies for the evaluation of the operation of energy systems were discussed. The achieved powers, efficiency, and levels of unitary C02 emission of the analyzed units were compared. The analyzed systems were characterized by high efficiency of 60%. In the case of the Graz system, it is possible to increase the efficiency by increasing the relatively low value of the COT temperature. Moreover, the presented systems power by hydrogen fuel showed low or no C02 emissions.
PL
W artykule zaprezentowano przegląd technologii magazynowania energii za pomocą gazu (powietrza, wodoru oraz gazu ziemnego). Technologie te należą do dwóch grup magazynowania energii w oparciu o regulacje Komisji Europejskiej, tzn. mechanicznych oraz chemicznych. Do technologii zaprezentowanych w niniejszym artykule zaliczyć można: technologie magazynowania energii w sprężonym i skroplonym powietrzu, sprężonym gazie oraz w wodorze. W odróżnieniu od technologii bateryjnych (elektrochemicznych) mają one szereg zalet. Przede wszystkim bazują na sprawdzonych technologiach, umożliwiają magazynowanie energii w dużych pojemnościach, charakteryzują się dużą trwałością oraz niską albo prawie zerową degradacją w czasie. Do wad należy zaliczyć duże nakłady inwestycyjne, duże nakłady jednostkowe w przypadku małych instalacji oraz konieczność zagospodarowania dużego terenu lub odpowiedniego ukształtowania geologicznego.
XX
The article presents an overview of energy storage technologies using gas (air, hydrogen and natura! gas). These technologies belong to two groups of energy storage based on the regulations of the European Commission, i.e. mechanical and chemical. The technologies presented in this article include: energy storage technologies in compressed and liquefied air, compressed gas and hydrogen. Unlike battery (electrochemical) technologies, they have a number of advantages. First of all, they are based on proven technologi es, enable energy storage m large capac1t1es, are characterized by high durability and low or al most zero degradation over time. The disadvantages include high investment costs, high unit costs in the case of small installations and the need to develop a large area or appropriate geological topography.
PL
W artykule przedstawiono analizy numeryczne wytrzymałości i warunków pracy niskociśnieniowych zbiorników z wodorkami metali (Metal Hydride Storage Tanks - MHS) przeznaczonych do magazynowania wodoru. Zbadano egzotermiczny proces napełniania zbiornika wodorem oraz endotermiczny proces jego rozładowania. Analizę termiczną zbiorników przeprowadzono bez stosowania dodatkowego chłodzenia/ogrzewania zbiornika (w zależności od badanego procesu) oraz z wykorzystaniem łaźni wodnej do regulacji temperatury obiektu. Równocześnie wyznaczono ilość ciepła powstającego w procesie napełniania zasobnika MH oraz jego deficyt przy jego opróżnianiu. Przedstawiono również wyniki numerycznej analizy stereomechanicznej konstrukcji zbiornika pod wpływem obciążeń statycznych. Symulacje numeryczne wykonano za pomocą oprogramowania ANSYS Mechanical i ANSYS Fluent. Uzyskane wyniki potwierdziły słuszność przyjętych założeń projektowych oraz uproszczeń w opracowywaniu modelu numerycznego zbiornika.
EN
The article presents numerical analyses of the strength and operating conditions of low-pressure Metal Hydride Storage tanks (MHS) designed for hydrogen storage. The exothermic process of filling the tank with . hydrogen and the endothermic process of its discharge were investigated. Thermal analysis of the tanks was carried out without additional cooling/heating of the tank (depending on the tested process) and with the use of a water bath to regulate the temperature of the obj ect. The amount of heat generated in filling the MH storage tank and its deficit during its emptying were also determined. The strength analysis of the tank structure under the influence of static loads is also presented. Simulations were performed using ANSYS Mechanical and ANSYS Fluent software. The obtained results confirmed the correctness of the adopted design assumptions and simplifications in the development of the numerical model of the tank.
16
Content available remote Wodór
17
PL
Przedstawiono techniczno-ekonomiczną analizę produkcji wodoru z biogazu przez parowy reforming biometanu. Kompleksowa analiza obejmuje bilans masowo-energetyczny instalacji, analizę finansową oraz ekologiczną. Poddano ocenie potencjał utylizacji odpadów (obornika) w kierunku przetworzenia na wodór poprzez reforming parowy biometanu. Wyniki przeprowadzonej analizy pokazują atrakcyjny sposób produkcji biowodoru z biogazu jako ekonomiczną technologię przetwarzania odpadów połączoną z ograniczeniem emisji zanieczyszczeń powodujących efekt cieplarniany.
EN
A numerical model of a pilot plant producing H₂ from biogas by steam reforming of biomethane was developed using Chemcad. The anal. covered the mass and energy balance of the installation, as well as financial and ecological estimation. The results of the anal. showed that the method of H₂ production is economical and reduces pollutant emissions.
PL
Opisano katalityczno-utleniającą konwersję palnych substancji węglonośnych w fazie gazowej, parowej, ciekłej, a nawet pyłowej do gazu syntezowego, czyli mieszaniny wodoru H₂ i tlenku węgla CO. W przypadku materii stałej zastosowano najpierw jej uproszczoną pirogazyfikację do fazy lotnej.
EN
A mixt. of wood chips and bark (approx. 2 cm) from deciduous and coniferous trees in equal proportions was gasified in a horizontal counter-current gasifier, and the resulting gas was subjected to catalytic oxidative conversion using a Ce/Ni catalyst. A mix. of H₂ and CO was obtained, which contained less than 0.1 g/m³ of tar.
19
Content available remote Plazmowa technologia wytwarzania wodoru
PL
Przedstawiono wyniki badań wytwarzania wodoru z mieszaniny wody i etanolu w plazmie wyładowania iskrowego. Wyładowanie iskrowe jest niewrażliwe na powstanie sadzy. Badano wpływ mocy wyładowania, natężenia i składu strumienia zasilającego reaktor na przebieg procesu wytwarzania wodoru. Największa uzyskana wydajność energetyczna wytwarzania wodoru wynosiła 605 L/kWh.
EN
A mixt. of water and ethanol, with a molar ratio in the range of 3-6, was subjected to a spark discharge plasma. The effect of discharge power, reactant flow rate and reactor feed stream compn. on the H₂ production process was studied. The highest energy efficiency of H₂ production was 605 L/kWh. The spark discharge was insensitive to soot formation.
20
Content available remote Dekarbonizacja metanu z udziałem katalizatorów na bazie żelaza
PL
Zbadano wpływ dwóch prostych, łatwo dostępnych i tanich katalizatorów żelazowych, tlenku żelaza i wiórków stalowych. Dla procesów katalitycznych oraz porównawczo dla procesu termicznego zbadano składy gazów poprocesowych w temp. 600, 750, 850, 950C i 1050°C. W gazach poprocesowych oznaczono zawartość metanu, wodoru, azotu, tlenu i sumy węglowodorów C₂ i C₃ za pomocą GC. Dla poszczególnych procesów wyznaczono konwersję metanu. Węgiel powstający w procesie zobrazowano metodą SEM i EDS i oceniono stopień jego grafityzacji za pomocą spektroskopii Ramana.
EN
MeH was thermally or catalytically pyrolyzed in the presence of Fe₂O₃ or steel shavings at temp. of 600, 750, 850, 950 and 1050°C. In the post-process gases, the content of MeH, H₂, N₂, O₂ and the sum of C₂ and C₃ hydrocarbons were detd. by GC and the conversion of MeH was calculated. The C formed in the process were analyzed and imaged by SEM and EDS. The degree of graphitization of the C was evaluated by Raman spectroscopy.
first rewind previous Strona / 28 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.