Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  water softening
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W ostatnich latach pojawiło się wiele nieoczekiwanych zjawisk społeczno-ekonomicznych, które spowodowały, że zamiast oczekiwanego wzrostu, nastąpiło zmniejszenie się konsumpcji wody. Skutkiem tego, wiele instalacji i budowli zostało zmuszonych do pracy z wydajnością znacznie niższą w porównaniu z zakładaną wydajnością projektową. Zmiękczanie jest jednym z powszechnie stosowanych procesów w uzdatnianiu wody. Oprócz doskonalenia istniejących metod zmiękczania wody, ważne jest także poszukiwanie nowych metod. W niniejszej pracy zaproponowano stosowanie do zmiękczania wody metody wapnowania na filtrach z polistyrenu piankowego ze wzrastającą warstwą osadu zatopionego. Przytoczone zostały równania do określenia teoretycznej i eksperymentalnej dawki wapna, dawki wapna (w rozkładzie stechiometrycznym) do usuwania wapnia i magnezu przy różnych temperaturach, a także wartość optymalnej dawki wapna oraz, odpowiednio, skuteczność łącznego usuwania wapnia i magnezu przy temperaturach: 0, 10, 25, 50 oraz 75°С.
EN
Growth of macroeconomic problems and aggravation of the social and political crisis occurrences, caused falling of production and financial economic indicators. These phenomena have an influence also on water consumption, making existing edifices of water management complex to work with considerably lower capacities, compared to designed. One of quite widespread processes of water treatment is softening. Important is as finding ways for improving of existing, as invention, research of new methods of water softening. In this article it is suggested to use method of liming on expanded polystyrene filters with increasing layer of suspended sediment for water softening. It’s presented equation for determination of theoretical and experimental dose of lime, dose of lime (in parts of stoichiometrical) for calcium and magnesium removal at different temperatures, and also values of optimal dose of lime and accordingly efficiency of compatible calcium and magnesium removal at temperatures: 0, 10, 25, 50 and 75°С.
PL
Twardość wody, powodowana obecnością jonów wapnia i magnezu, nie jest czynnikiem stanowiącym zagrożenie zdrowia konsumentów. Jednakże woda o podwyższonej twardości może nie być akceptowana przez odbiorców z powodu wytrącania się osadów i wówczas zmniejszenie twardości wody staje się koniecznym warunkiem komfortu jej użytkowania. Zmiękczanie wody może być prowadzone na drodze chemicznej lub fizycznej, w takich procesach jak wymiana jonowa, procesy membranowe, strącanie chemiczne czy krystalizacja. Możliwości zmiękczania wody podziemnej metodą krystalizacji heterogenicznej, łącznie z usuwaniem związków żelaza i manganu, określono doświadczalnie w stacji pilotowej, której podstawowym elementem był reaktor ze złożem fluidalnym z piasku kwarcowego, pełniącego rolę zarodków krystalizacji węglanu wapnia. Twardość ogólna wody podziemnej wynosiła 160÷166 gCaCO3/m3, zawartość żelaza – 0,44÷0,66 gFe/m3, a manganu – 0,16÷0,23 gMn/m3. Do zmiękczania wody zastosowano ług sodowy (NaOH), dawkowany w ilości odpowiadającej w przybliżeniu dawce stechiometrycznej wymaganej do usunięcia jonów wapnia. W badaniach pilotowych nad zmiękczaniem wody podziemnej w procesie krystalizacji heterogenicznej z użyciem ługu sodowego wykazano możliwość zmniejszenia twardości ogólnej wody o 40% przy użyciu dawki NaOH o połowę mniejszej od stechiometrycznej. Stwierdzono selektywne usuwanie jonów wapnia, przy stosunkowo niewielkim zmniejszeniu zawartości jonów magnezu, a także jednoczesne usunięcie z wody związków żelaza i manganu. Przeprowadzona analiza porównawcza procesu krystalizacji heterogenicznej i nanofiltracji potwierdziła przydatność obu procesów do zmniejszania twardości wody wprowadzanej do systemu dystrybucji oraz jej negatywnych skutków.
EN
Hardness of water caused by calcium and magnesium salts does not pose any health risk to consumers. However, harder water may not be widely accepted due to the build-up of scale deposits. Hence, hardness reduction becomes a critical factor of water usage comfort. Water hardness may be reduced via chemical or physical processes, such as ion exchange, membrane processes, stripping or crystallization. Potential application of heterogeneous crystallization to groundwater hardness reduction, including iron and manganese removal, was determined empirically at the pilot station with fluidized bed reactor of arenaceous quartz, serving as a nuclei of crystallization for calcium carbonate. Total hardness of groundwater was ranging from 160 to 166 gCaCO3/m3, the iron content – from 0.44 to 0.66 gFe/m3, while the manganese – from 0.16 to 0.23 gMn/m3. Sodium hydroxide (NaOH) was used for the purpose of water softening, at the amount close to the stoichiometric dose required for the calcium ion removal. Pilot studies on groundwater softening using the heterogeneous crystallization with sodium hydroxide revealed a possibility to reduce the total water hardness by 40% at the half stoichiometric point. Selective calcium ion removal was demonstrated with relatively small reduction in magnesium content. Iron and manganese cations were co-removed. A comparative analysis of heterogeneous crystallization and nanofiltration confirmed suitability of the both processes for hardness reduction of water entering the distribution system and elimination of its adverse effects.
PL
W pracy opisano stosowaną w USA technologię zmiękczania chemicznego wody w celu zmniejszenia jej korozyjności i zapobiegania tworzeniu kamienia kotłowego. Zwrócono uwagę na poważne wady procesu, a w szczególności znikome stężenia magnezu i wapnia w wodzie pitnej. Chociaż wysokie wartości pH tak uzdatnionej wody zmniejszają znacznie szybkość korozji żelaza, to jednak zwrócono uwagę na niekorzystny wpływ takiego uzdatniania na inne aspekty korozyjnej oceny jakości wody.
EN
Water softening as a process of drinking water treatment applied in the U.S.A. has been described. The main idea was a production of clean non-corrosive water, moreover not forming scales in pipes after heating. Some shortcomings of the treatment method have been pointed out, including first of all extremely low concentrations of magnesium and calcium in drinking water. In spite of the fact, that high pH values control speed of corrosion, some inverse effects of this treatment technology on water corrosivity have been pointed out.
EN
The aims of the current study is to investigate the constraint of using caustic soda in water treatment and evaluating its performance in water softening, compared to other chemical group, including lime and sodium carbonate. Based on mass balance of reactants in the caustic softening process, a mathematical relation for expressing the constraint of using caustic soda in water softening was derived. To evaluate caustic soda performance in water softening and proving the derived relation as well, some experimental works on some water sources including well water and clarifier’s inlet water in two oil refineries were performed. The results showed that compared to lime- sodium carbonate, the caustic soda is the best choice for water softening, however, using caustic soda in water softening, while restrictive mathematical relation doesn’t verify the chemical characteristics of water, could lead to an extreme increase in alkalinity.
5
Content available remote Wpływ procesu zmiękczania na jakość wody dostarczonej do budynku
PL
W 2004 roku Światowa Organizacja Zdrowia (Word Heath Organization – WHO) ustaliła wymagania, jakim powinna odpowiadać woda przeznaczona do spożycia przez ludzi.1 W przygotowanym przez nią dokumencie zawarto szereg zaleceń i przesłanek zdrowotnych dotyczących wymaganej jakości wody przeznaczonej na różne cele. Na podstawie zaleceń WHO wprowadzono w życie dyrektywę unijną obowiązująca w krajach Unii Europejskiej, a więc i w Polsce. Określono w niej wiele rygorystycznych, opartych na przesłankach zdrowotnych, standardów. Wskazano również wszystkie niezbędne środki, jakie muszą być podjęte, by zapewnić odpowiednią jakość wody.
EN
In the paper is shown the impact of installing the water softener in a family house on the quality of water. Disturbances of comfort with water installation using (ex. blue water, deposits) cause to analyze water installation to find a solution. Comparison of the quality of inlet water into the building and water from top in the inner installation indicate that water quality problem in the building was associated with the inner water installation. Water softener in the building decrease the hardness of water to 0,09 mval/l (1.7 mg Ca/l), making it impossible to produce the protective layer in the copper heat exchanger in hot water buffer reservoir. The consequence of this was the water pollution in the installation by copper compounds, which began to precipitate on the fittings installed in building.
PL
Nowoczesne systemy ciepłownicze z rurami preizolowanymi wymagają dobrej jakości wody ciepłowniczej. Woda nieodpowiedniej jakości jest odpowiedzialna przede wszystkim za: korozję sieci oraz wysoką ilość zawiesiny o własnościach ferromagnetycznych w wodzie ciepłowniczej. Ta zawiesina jest przyczyną awarii wielu urządzeń, jak np. pompy bezdławnicowe, wirnikowe, wodomierze, itp. W Polsce jakość wody zasilającej sieci ciepłownicze jak i obiegowej jest znormalizowana wg PN-85/C-04601. W Niemczech i w Danii dla rur preizolowanych wyznacza się wyższe jakościowo parametry fizykochemiczne wody niż określa to norma PN-85/C- 04601. Bardzo istotne dla sieci ciepłowniczych jest maksymalne odtlenienie wód zasilających obiegi ciepłownicze i całkowita redukcja tlenu w wodach obiegowych. Oprócz metod chemicznych, podnoszących z reguły zasolenie wody, można wykorzystać do odtleniania odgazowanie próżniowe. W artykule omówiono także chemikalia służące odtlenieniu wody, korekcji chemicznej odczynu oraz inhibitory korozji. Na kilku przykładach zreferowano klasyczne metody przygotowania wody zasilającej jak zmiękczanie i dekarbonizacja oraz demineralizacja jonitowa, a także nowoczesne metody oparte o techniki membranowe, jak odwrócona osmoza. Podano także kalkulację wytwarzania 1 m-’ wody uzdatnionej za pomocą tych metod. Autorzy zauważyli w polskim ciepłownictwie potrzebę ciągłego doczyszczania wody obiegowej na tzw. nerce ciepłowniczej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.