Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 376

Liczba wyników na stronie
first rewind previous Strona / 19 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wastewater
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 19 next fast forward last
EN
Wastewater from wastewater treatment plants (WWTPs) often requires further treatment before it can be safely reused. Lime is a common and affordable material used for this purpose, but its production can generate significant environmental impacts. This study developed an eco-friendly and effective lime substitute from eggshell waste for wastewater treatment. First, pre-treated wastewater effluent from WWTP El Jadida, Morocco, was collected and characterized. It was found that COD, BOD5, and TSS values showed non-conformity from Moroccan discharge standards, as well as high concentrations of heavy metals such as cadmium (Cd), zinc (Zn), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), silver (Ag), beryllium (Be), copper (Cu) and cobalt (Co). These pollutants represent a potential risk to human health and the environmental ecosystem. To reduce this pollution, the optimal mass of lime powder obtained by thermal treatment of eggshell waste was determined by testing a concentration series of 6, 12, 18, 24, 30, and 36 g·L-1. The findings confirmed that the addition of the optimal dose of prepared lime (24 g·L-1) resulted in a significant reduction in pollution parameters, with abatement rates of 77% for BOD5, 63% for COD and 66% for TSS, respectively. Furthermore, the eco-friendly lime substitute also showed promise in reducing the colorization rate for dyes by 84% and removing heavy metals through precipitation. However, the generated by-product loaded with toxic pollutants should be encapsulated in eco-materials to ensure safe operation and contribute to a sustainable management strategy for wastewater treatment.
PL
Piwo jest piątym najczęściej spożywanym napojem na świecie, a branża browarnicza stanowi ważny segment gospodarczy w wielu krajach świata. Proces produkcji zużywa duże ilości wody i generuje nawet 10 l ściekow na 1 l wyprodukowanego piwa. Ścieki browarnicze zawierają wysokie poziomy węgla organicznego oraz fosforu i azotu, ale w porównaniu ze ściekami komunalnymi nie zawierają uciążliwych zanieczyszczeń, takich jak farmaceutyki czy patogeny pochodzenia jelitowego. Bogactwo związków organicznych w ściekach browarniczych sprawia, że mogą one stanowić wysokiej jakości składniki odżywcze dla hodowli drobnoustrojów. Zdaniem specjalistów, ścieki browarnicze powinny być poddawane recyklingowi, biorąc pod uwagę zmniejszające się zasoby wody i mocny trend gospodarki cyrkularnej. Artykuł ma na celu dokonanie syntetycznego przeglądu najważniejszych metod oczyszczania ścieków browarniczych.
EN
Beer is the fifth most consumed beverage in the world, and the brewing industry is an important economic segment in many countries of the world. The production proces consumes large amounts of water and generates up to 10 liters of wastewater per liter of beer produced. Brewery wastewater contains high levels of organic carbon, phosphorus and nitrogen, but compared to municipal wastewater, it does not contain nuisance pollutants such as pharmaceuticals or enteric pathogens. The richness of organic compounds in brewery wastewater makes it a high-quality nutrients medium for the cultivation of microorganisms. According to specialists, brewery wastewater should be recycled, taking into account the decreasing water resources and the strong trend of the circular economy. This article aims to provide a synthetic review of the most important methods of brewing wastewater treatment.
PL
Przedstawiono wyniki badań oczyszczania ścieków z przemysłu drobiarskiego metodą pogłębionego utleniania w procesie Fentona. Reakcje Fentona prowadzano przy stałej dawce katalizatora i zmiennych dawkach utleniacza, przy stosunku masowym Fe²+:H₂O₂ w zakresie 1:2-1:10. Zastosowana metoda pozwoliła na znaczne zmniejszenie ogólnej liczby mikroorganizmów oraz wyeliminowanie obecności bakterii z grupy coli i Escherichia coli, enterokoków i pałeczek Salmonella we wszystkich oczyszczanych próbkach ścieków w całym zakresie stosowanych dawek nadtlenku wodoru (4-20 g/L). Parametry fizykochemiczne ścieków, takie jak ChZT, barwa i mętność zostały maksymalnie obniżone o odpowiednio 95%, 98% i 100%.
EN
Wastewater from the poultry industry was treated by advanced oxidn. in the Fenton process. A constant catalyst dose and variable oxidant doses were used, with the Fe²+: H₂O₂ mass ratio in the range of 1:2-1:10. The treatment allowed for a significant redn. in the total no. of microorganisms and eliminated the presence of coli form, Escherichia coli bacteria, enterococci and Salmonella bacilli in all treated wastewater samples, in the entire range of H₂O₂ doses (4-20 g/L). The detd. phys. chem. parameters such as COD, color and turbidity were maximally reduced by 95, 98, and 100% resp.
PL
Przedstawiono symulację biosorpcji jonów miedzi na granulkach alginianowych dla ustalonych wartości temperatury procesu. Ze względu na koszty związane z etapem chłodzenia często wymagane jest prowadzenie procesów w temperaturze zbliżonej do temperatury otoczenia. Na podstawie zaproponowanego modelu matematycznego obliczono skuteczność procesu biosorpcji w wąskim zakresie temp. 20-25°C, często stosowanym w przemyśle. Uzyskane wyniki dowodzą dużej wrażliwości procesu biosorpcji na zmianę temperatury. Obliczone wartości efektywnego współczynnika dyfuzji Deᵀ mieszczą się w przedziale 0,55-0,67∙10⁻⁹ m²/s, a przedstawione wyniki potwierdzają możliwość łatwego prognozowania De za pomocą proponowanej metody.
EN
A math. model of the biosorption process of Cu ions by alginates was created. The biosorption efficiency was detd. using the values of the effective diffusion coeff. (De) depending on the temperature, pH of the Cu soln. (P) and alginate content in the granules (C). Formulas for calcg. P and C were developed for the biosorption process carried out at temp. in the range of 9.8-60.2°C. The results prove the sensitivity of the biosorption process to temp. changes. The calcns. enable easy prediction of the effective diffusion coeff. De of the biosorption process.
PL
W pracy wykonano wstępne badania w zakresie oceny operacji wykończenia właściwego skór z punktu widzenia ekologii. Przedmiotem zainteresowania były ścieki powstające na skutek stosowania płaszcza wodnego. Przeprowadzono badania w warunkach przemysłowych dla 18 dniowego okresu recyklingu ścieków. Wykonano oznaczenie suchej masy i analizę laserową (rozkład wielkości cząstek) ścieków po każdej partii natryskiwanych skór obuwiowych. W laboratorium wykonano próby oczyszczenia ścieków. Zaproponowano koncepcję zmniejszenia zużycia wody w operacjach wykończania właściwego skór, dla metody natryskowej.
EN
In the work was carried out the preliminary research on the assessment of proper leather finishing operations from the ecological point of view. The subject of interest was wastewater generated as a result of the use of a water jacket. The tests were carried out in the industrial conditions for an 18-day wastewater recycling period. The dry matter determination and laser analysis (size distribution particles) of wastewater were performed after each batch of sprayed shoe leather. The wastewater purification tests were carried out in the laboratory. A concept of reducing using of water in leather finishing operations was proposed for the spraying method.
EN
During the dewatering process, centrate is produced, which is returned to the beginning of the technological system. The quality of the resulting centrate, and therefore the size of the returned load of pollutants, affects the demand for electricity in the process of biological wastewater treatment. The following study presents the results of centrate quality tests at five wastewater treatment plants located in Poland. The dependence between suspended solids content and ammonia and COD concentrations in the centrate was determined. It was estimated that an increase in the overall suspended solids leads to an increase in COD by about 1.15 kgCOD/kgTSS. No correlation was found between TSS concentration and ammonia. It was calculated that the complete elimination of suspended solids from the sludge would reduce the electricity consumption for all five objects by about 535 MWh/y.
7
EN
Given the significant consumption and future demand for water resources, this paper intends to find the conditions for using a flotation process with different water quality. One of the alternatives is using water under secondary treatment with industrial water mixtures to partly recycle domestic wastewater and maximize metallurgical benefits. Results show that using wastewater (only with secondary treatment) in flotation is detrimental to copper recovery. However, molybdenum recovery is significantly improved. For mixtures with 50 [%] wastewater, 50 [ppm] frother, 20 [ppm] collector, and pH 10, copper recovery decrease amounts to 0.4 [%], while molybdenum shows a 2.4 [%] recovery increase. In addition, copper concentrate grade decreases by 1.4 [%], while molybdenum grade remains. Therefore, using wastewater is viable, particularly in the case of molybdenum. So, this study proposes using of water mixtures in the copper depression stage to improve molybdenum recovery.
EN
Urban planning management should consider wastewater as a challenge. Wastewater, in this case, grey water, is full of dangerous contaminants and, at specific concentrations, can turn into a substance that affects the environment. The effluent of the released waste must therefore be managed to ensure that it complies with the government’s quality standard criteria. The membrane bioreactor (MBR) technology process produced waste effluents with low concentrations of biological oxygen demand (BOD5), chemical oxygen demand (COD), and total organic carbon (TOC), proving its higher efficiency as a biological processing stage. Total coliforms and E. coli are not present in processed products, detergents and total suspended solid (TSS) are effectively degraded. This is made possible by the considerably lower organic load; as a result, biomass accumulation slows and mixed liquor suspended solids (MLSS), which have low value, are produced. With the assistance of continuous airflow, and without the use of chemicals or backwashing, an ultrafiltration module (UF) with a membrane cut-off size small enough to be able to create a constant permeate flux during the grey water treatment process is necessary. Although processed grey water does not pass denitrification, all parameters linked to the quality of the effluent water exceed environmental quality criteria.
EN
The article examinee the characteristics of sewage sludge and its impact on the environment. The description of technical installations, sludge sites in the municipal wastewater treatment systems, which are sources of unfavorable sanitary and epidemiological condition of the studied territory, was presented. A detailed analysis of the structure, composition and morphology of sludge sediment was given. It was found that the sludge presents a loose, rough heterogeneous porous structure represented by the presence of a fibrous substrate with amorphous scaly-crystalline inclusions. During laboratory analyses of the composition of the dry residue, the presence of such types of heavy metals as chromium, manganese, nickel, copper, zinc, lead, cobalt, molybdenum, cadmium was revealed. The excess of permissible concentrations of various elements was observed: chromium more than 7.1 at MPC – 6.0 by 1.18 times; copper more than 3.3 at MPC – 3.0 by 1.1 times; zinc more than 27.3 at MPC – 23.0 by 1.18 times; lead more than 34.3 at MPC – 32.0 by 1.07 times; cobalt more than 6.4 at MPC – 5.0 by 1.28 times; molybdenum more than 6.9 at MPC – 5.0 by 1.3 times. Soil analysis revealed a pH of 7.1, which is neutral, may be optimal for plants; the concentration of calcium, iron and chromium does not exceed the established maximum permissible values. When analyzing the air environment of the territory of the treatment facilities, the presence of gaseous pollutants, such as methane, ammonia, nitrogen dioxide, hydrogen sulfide, carbon monoxide, was established. It has been established that anthropogenic sludge landfills are the sources that create a technogenic load on the atmospheric air, polluting it with methane, since the concentration of methane exceeds the MPC by more than 3 times.
EN
This paper provides an overview of the adsorption of petroleum products, focusing on various aspects such as adsorbent types, mechanisms of adsorption, factors influencing efficiency, kinetics, equilibrium, practical applications, and environmental implications. It explores the properties and characteristics of adsorbents, including activated carbon, zeolites, clay minerals, silica gel, and others, highlighting their interaction with petroleum products. The article delves into the theories and mechanisms governing the adsorption process, discussing physical and chemical adsorption as well as the role of forces like van der Waals, hydrogen bonding, and electrostatic interactions. The results of experimental investigations were conducted to evaluate the adsorption capacities of various adsorbents for petroleum products. The adsorption performance, kinetics, and equilibrium behavior of different adsorbents were analyzed, providing insights into their effectiveness in removing petroleum contaminants from aqueous solutions. The adsorption kinetics and equilibrium studies were explored through mathematical models like Langmuir and Freundlich isotherms. The practical applications of adsorption in the petroleum industry were discussed, including removing pollutants from wastewater, gas and diesel purification, and desulfurization. The environmental implications of adsorption technology in mitigating oil spills and reducing petroleum-related pollution were addressed. The conclusion emphasizes the significance of these studies in enhancing understanding, developing efficient solutions, and addressing environmental challenges associated with the petroleum industry. Ongoing research in this field aims to further improve adsorption processes for a more effective and sustainable approach.
EN
Many countries use nontraditional methods to treat wastewater, especially those with water lacks. Among these methods, heterogeneous photocatalysis is more commonly widely used since it converts organic molecules into carbon dioxide and water. In this study, the photocatalytic degradation process of total organic carbon was investigated by TIO2/UV technique (TUT). This treatment is carried out in a batch recycle reactor using a UV light and catalyst TIO2. The optimum operating parameters were investigated regarding the best organic removal including, total organic carbon concentration, flow rate, pH, irradiation time, and photocatalysis dosage. The result showed that the TUT is affected by reducing total organic carbon (TOC) from synthetic wastewater (SW) by 61% at 50 ml/min of flow rate, 250 mg of catalyst concentration TIO2, and a concentration of TOC of 25 mg/l. Then the result of TUT was compared with a process of combining TIO2/UV and an oxidizing agent (Hydrogen peroxide H2O2). It was found that 73% of organic removal was obtained which is best than TUT when using an H2O2 dosage of 100 mg/l. Experimentally, Ozone was also added to the process of TUT and the result showed that the removal percentage increased to 80%.
EN
Aloe vera leaves (AVL), a by-product of agricultural waste, have been applied as a biosorbent for reducing Ni(II) ions in aqueous solutions. The biosorption capability of AVL powder was enhanced through chemical treatment with 0.10 M citric acid solution. Fourier-transform infrared (FTIR) spectrophotometer, scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX), pH of point-zero-charge (pHPZC), and pHslurry analyses were used to study the surface, and chemical properties of citric acid-treated Aloe vera leaf powder (CAAVLP). The setting for experiments such as pH solution, CAAVLP dose, initial concentration, and biosorption time was investigated. Maximum Ni(II) ion biosorption capability was determined to be 48.65 mg/g based on the Langmuir model at pH 6, a CAAVLP dose of 0.02 g, initial Ni(II) concentrations of 5 to 50 mg/L and biosorption time of 120 min. The data for the isotherm and kinetics were well matched with the Freundlich and pseudo-second-order models, respectively, with high regression correlation (R2) and low chi-square (χ2) values. The presence of more-COOH groups after treating AVL with citric acid resulted in more Ni(II) ions being able to be removed.
EN
Microcystis blooms and the related toxin known as microcystin-LR (MC-LR) put the safety of human water consumption and global irrigation practices in jeopardy. MC-LR is widely distributed in various environments, including water, sediments, plants, and other aquatic organisms. The use of water-containing microcystins for agricultural purposes may have to be restricted despite the limited availability of clean water resources. Accordingly, the present work aimed to determine the MC-LR concentrations and recognize the environmental parameters that initiate the growth of toxic cyanobacteria and MC-LR occurrence in 20 irrigation ponds in the Jordan Valley area. The irrigation ponds studied were found in a hypereutrophic condition, with high levels of N:P ratio and low transparency. These cause inseparable effects such as cyanobacterial bloom and MC-LR occurrence. The investigated ponds were classified as hypereutrophic according to General Quality Index (GQI), with two different types of algae covering the surface. The first was the Lemna sp. or duckweeds (Family Araceae) which are free-floating masses, and the second was the cyanobacteria algal bloom. Unpaired t-tests were performed and showed that the concentrations of MC-LR in pond water abundant with cyanobacteria algal bloom in September 2021 were significantly higher (P = 0.7906) than in June for the same year (0.3022 ± 0.0444 and 0.1048 ± 0.0171 ppb, respectively). Two methods for extracting MC-LR were used and showed a significant difference in MC-LR concentration in ponds with an abundance of cyanobacteria algal blooms (0.2273 ± 0.0356 ppb) compared to the ponds with an abundance of Lemna sp. or duckweeds collected in June 2021 (0.1048 ± 0.0171 ppb). Despite all of the efforts made by Jordan Valley farmers to prevent or limit the mass growth of cyanobacteria and its consequences for the eutrophication process in their irrigation ponds through the use of fish breading and chemicals such as copper sulfate, this environmental problem is still harming their crops and irrigation methods and requires immediate government assistance.
EN
The toxic heavy metals, as non-biodegradable pollutants, have become a serious threat to aquatic environment. This study aimed to assess the efficiency of the low cost, available and environment-friendly peanut shell as an effective adsorbent for the removal of Zn, Pb and Cd from wastewater. The peanut shell was prepared by carbonization by pyrolysis process at 550 °C, activated with 7M potassium hydroxide(KOH) at 750 °C, and then characterized by using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface area analysis. The optimum conditions for metal ions adsorption were investigated as a function of various parameters. The optimum conditions included: pH of 6, initial metal concentrations of 20 mg/l for Pb and Zn as well as 40 mg/l for Cd, adsorbent mass of 2 g, optimum temperature of 45 °C and the preferable contact time of 60 min. The removal percent for the studied metal ions exceeded 98%. The adsorption isotherm showed that the Langmuir model was the best fitted model for the metal ions adsorption onto activated peanut shell surface, and the kinetic of adsorption followed the pseudo-first order model. The obtained results showed that the KOH-activated peanut shell possess higher adsorption efficiency for the removal of the studied metal ions from wastewater.
EN
The constant discharge of large quantities of toxic substances due to human activities has led to a global environmental issue. Numerous industrial sectors’ effluents, which include coal-based power plants, mineral extraction activities, electroplating processes, as well as battery manufacturing, release metallic ions towards different ecosystems, such as Cadmium (Cd), Mercury (Hg), and Chromium (Cr). Heavy metals pose a significant danger to living organisms, humans, and environments because of their properties, mainly severe toxicity, and strong accumulation ability. Metallic ions are not subject to breakdown towards final components when contrasted with organic contaminants, which are significantly impacted by biochemical and chemical decomposition. Consequently, eliminating these elements has been regarded as a significant task within the water treatment sector. The purpose of this article is to analyze the literature related to heavy metals in terms of different issues. The heavy metals expression is explained. The natural sources and human activities responsible for releasing metallic ions into the environment are comprehensively discussed. In addition, heavy metals toxicity and potential risks to humans and different ecosystems are included. Various approaches for removing heavy metals from industrial wastewater, along with their associated advantages and drawbacks, are further evaluated.
EN
An innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.3V, and NaCl concentration of 1.4 g/L. This study demonstrated that the carbon fiber electrode was very efficient in Cr(VI) ions removal and the BBD methodology was a practical and effective strategy for predicting the results of various experimental conditions during a CDI process for the removal of chromium ions.
PL
W pracy przedstawiono podstawowe systemy kanalizacji podciśnieniowej i przeciętne jednostkowe zużycie energii elektrycznej wg danych literaturowych i badań własnych. Stwierdzono, że energochłonność systemów kanalizacji próżniowej jest stosunkowo wysoka (200-400 kWh/a na jedno przyłącze), lecz mocno zróżnicowana (od 0,2 kWh/m3 do kilku kWh/m3), co wskazuje na duże możliwości jej zmniejszenia. Wyszczególniono cztery obszary redukcji kosztów transportu: koncepcję, projekt, wykonawstwo i eksploatację. Wszystkie te obszary mogą w różnym stopniu decydować o mocy zainstalowanej i zapotrzebowaniu na energię do transportu ścieków w kanalizacji podciśnieniowej, ale największe efekty może przynieść poprawa sprawności pomp próżniowych i sterowanie czasem otwarcia zaworów opróżniających.
EN
The paper presents basic vacuum sewerage systems and average unit electric energy consumption according to the literature data and own research. It was found that the energy consumption of vacuum sewage systems is relatively high (200-400 kWh/a per one connection), but highly diversified (from 0.2 kWh/m3 to several kWh/m3), which indicates great opportunities for its reduction. Four areas of transport cost reduction were specified: concept, design, construction, operation and maintenance. All these areas may, to a certain degree, determine the installed electric power and energy demand for the transport of wastewater in a vacuum sewerage system, but the greatest effects can be achieved by improving the energy efficiency of vacuum pumps and controlling the opening time of vacuum valves.
PL
Za zanieczyszczenie wód substancjami biogennymi - azotem i fosforem - w dużej mierze odpowiadają rolnictwo i gospodarka ściekowa. By ograniczyć wpływ tych sektorów na stan wód, regularnie prowadzone są przeglądy i aktualizacje programów i polityk w tym zakresie, zarówno na poziomie Unii Europejskiej, jak i krajowym, oraz realizowany jest szereg działań i inwestycji. Z uwagi na dynamiczny rozwój przemysłu i produkcji w ostatnich dekadach problemem dla wód stały się nowe rodzaje zanieczyszczeń. Do walki z ich ograniczeniem służyć ma szeroki wachlarz nowych rozwiązań proponowanych w projekcie znowelizowanej dyrektywy ściekowej.
EN
Agriculture and wastewater management are among the main sources of pollution of waters with biogenic substances such as nitrogen and phosphorus. In order to reduce the impact of these sectors on the status of waters, regular revisions and updates of related programmes and policies are carried out, both on EU and national levels, followed by a series of actions and investments. Due to the dynamic development of industry and production over recent decades, waters now face new types of pollutions. The draft revision of the wastewater directive - the so-called transformation - includes a wide range of new solutions to reduce them.
EN
In response to food needs and the growing desire to exploit local food, urban and peri-urban agriculture is meeting these needs by producing vegetables, fruits and other foods in cities and their suburbs. In addition to the increasing need for water due to droughts, this agriculture provides wastewater (WW) and treated wastewater (TWW) that is used for irrigation. This study was conducted to compare urban irrigation water: water from Oued Fez upstream and well water. As well as peri-urban irrigation water: water from Oued Fez downstream considered as WW and TWW from the treatment plant of the city of Fez. These in comparison with the rural irrigation waters: waters of Oued Bitit. The microorganisms investigated are total and thermotolerant coliforms, helminth eggs, Salmonella and cholera vibrio. The study took into account the transfer of these pathogenic bacteria at the level of soils and cultivated plants, cardoon and eggplant. The results showed a contamination out of national and international standards of the two types of coliforms that it is in winter or in summer in the TWW, WW, the water of Oued Fez and the water of wells located upstream of the city. This fecal contamination was found in soils and crops irrigated by urban and peri-urban water. The same was true for helminth eggs, but the number of eggs was greater in winter than in summer for soils. Cholera Vibrio was present in the different types of irrigation water in summer. But still in winter in WW and TWW. This bacterium was also present in soils, cardoons and eggplants irrigated by WW, TWW and Oued Fez waters upstream. Salmonella was present only in the TWW in summer. Only the plot irrigated with water from Oued Bitit in the rural zone was within the norms on the three levels of irrigated water, soil and plants and in both periods.
first rewind previous Strona / 19 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.