Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 41

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  trigeneration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
Wodór będzie stanowił ważny element w procesie transformacji energetycznej, jako ogniwo łączące odnawialne źródła energii z wieloma gałęziami gospodarki – od paliw dla transportu, poprzez procesy przemysłowe, aż do generacji energii elektrycznej i ciepła. Instalacje pracujące na pokrycie lokalnego zapotrzebowania na paliwo, z wykorzystaniem pobliskich źródeł, zwiększą bezpieczeństwo energetyczne regionów i ułatwią dekarbonizację wielu sektorów, zgodnie z założeniami Pakietu Klimatycznego oraz aktualnym planem RePowerEU. Wodór stanowić może także element bilansujący dla stabilnej pracy systemu elektroenergetycznego. Droga do rozwoju gospodarki wodorowej wymaga natomiast wypracowania standardów, optymalizacji rozwiązań technicznych, budowania łańcucha dostaw oraz wprowadzenia stabilnego otoczenia prawnego. Niniejszy rozdział podsumowuje kluczowe cechy nośnika energii, jakim jest wodór, najważniejsze technologie jego produkcji i wykorzystania oraz ich potencjalny wpływ na rynek energii. Opisano również warianty zastosowania paliwa rozpatrywane przy budowaniu gospodarki wodorowej i jej rolę w procesie transformacji energetycznej, które stanowią o potencjale technologii i uzasadniają podejmowane działania. Polska obecnie produkuje około 1 mln ton wodoru rocznie, głównie poprzez reforming parowy gazu ziemnego. Posiadane doświadczenia w tym zakresie powalają nam na podejmowanie działań związanych z dekarbonizacją istniejących źródeł wytwórczych oraz rozwój nowych źródeł zeroemisyjnych. Obecny proces tworzenia się nowego rynku opartego na wykorzystaniu nisko- i bezemisyjnego wodoru sprzyja powstawaniu wielu ciekawych inicjatyw, w tym struktur nazwanych Dolinami Wodorowymi. W rozdziale opisano aktywne podmioty i wybrane projekty realizowane aktualnie w Polsce. Podjęto także temat założeń Polskiej Strategii Wodorowej – opisano główne cele, które ona wyznacza, a także zagadnienia związane z trwającymi zmianami legislacyjnymi. Podsumowanie zawiera wnioski wyciągnięte z realizacji pierwszych projektów wodorowych w Polsce przez firmę SBB ENERGY SA.
EN
Hydrogen will be an important element in the energy transition, as a link between renewable energy sources and many sectors of the economy – from fuels for transportation to industrial processes to electricity generation and heat. Installations working to meet local fuel needs, using neighbouring sources, will increase regional energy security and facilitate the decarbonization of many sectors, in line with the Climate Package and the current RePowerEU plan. Hydrogen can also provide a balancing element for the stable operation of the electric power system. However, the road to the growth of the hydrogen economy requires the development of standards, the optimization of technical solutions, the building of a supply chain and the introduction of a stable legal environment. This chapter summarizes the key features of the hydrogen energy carrier, the most important technologies for its production and use, and their potential impact on the energy market. It also describes the fuel application variants considered in building a hydrogen economy and its role in the energy transition process, which represent the potential of the technology and justify the actions being taken. Poland currently produces about 1 million tons of hydrogen per year, mainly through steam reforming of natural gas. The experience we have in this area allows us to take steps to decarbonize existing generation sources and develop new zero-carbon production sources. The current process of creating a new market based on the use of low- and zero-emission hydrogen is fostering the formation of many interesting initiatives, including structures called Hydrogen Valleys. The chapter describes active players and selected projects currently underway in Poland. The assumptions of the Polish Hydrogen Strategy are also addressed – the main goals it sets are described, as well as issues related to ongoing legislative changes. The summary includes lessons learned from the implementation of the first hydrogen projects in Poland by SBB ENERGY SA.
PL
Artykuł podejmuje problematykę związaną z podnoszeniem sprawności trigeneracyjnych agregatów gazowych „produkujących” ciepło, chłód i energię elektryczną w sposób skojarzony. Prezentuje również szczegółowe bilanse poszczególnych maszyn wchodzących w skład agregatu oraz bilanse podczas pracy w różnych trybach. Przepływ energii widoczny w bilansach, obrazuje obszary zysków i strat, których szczegółowa analiza pozwala wyodrębnić miejsca, w których należy szukać potencjalnych strat energii. Odzysk we wskazanych obszarach, choćby nie w pełnym wymiarze powoduje podniesienie sprawności całego urządzenia.
EN
The article addresses the matter of improving the efficiency of trigeneration gas chillers that ‘produce’ heat, cooling and electricity power in a combined manner. It also presents detailed balances of the individual machines comprising the chiller and balances during operation in different modes. The energy flow presented in the balances, shows the areas of gains and losses, a detailed analysis of which makes it possible to identify where to look for potential energy losses. Recovery in the areas indicated, even if not to the full extent, results in an increase in the efficiency of the entire unit.
PL
W artykule podjęto problematykę związaną z podnoszeniem sprawności trigeneracyjnych agregatów gazowych „produkujących” ciepło, chłód i energię elektryczną w sposób skojarzony. Zaprezentowano również nową koncepcję w odniesieniu do budowy, jak i nowatorskie podejście do sposobu sterowania agregatem. W budowie urządzenia położono szczególny nacisk na odzyskiwanie ciepła, zarówno pochodzącego wprost z chłodnicy silnika spalinowego jak również ze spalin, przez ich ochłodzenie oraz wykroplenie zawartej w nich pary wodnej. Ciepło pozyskano również z korpusu silnika, sprężarki napędzającej układ chłodniczy oraz obudowy generatora energii elektrycznej. W sposobie sterowania ujęto zarówno cele podstawowe, jak też zasilanie i poprawna praca urządzeń i instalacji wchodzących w skład trigeneratora oraz optymalnego ich wykorzystania w celu zwiększenia efektywności, trwałości i funkcjonalności urządzenia jako całości.
EN
This article addresses the issue of improving the efficiency of trigeneration gas heat pomps that ‘produce’ combined heat, cooling and electricity. It also presents a new concept in relation to the design, as well as an innovative approach to the way the gas pomp is controlled. In the construction of the gas pomp, particular emphasis was placed on heat recovery, both from the combustion engine radiator and from the exhaust gases, by cooling them and condensing the water vapour they contain. Heat was also extracted from the engine casing, the compressor driving the cooling system and the electrical generator housing. The control method addresses both primary objectives, such as the power supply and correct operation of the equipment and systems that make up the trigenerator, and their optimal use to increase the efficiency, durability and functionality of the unit as a whole.
EN
The energy transition is at the centre of research and development activities with the aim to fight against the effects of global warming. Today, renewable energies play a significant role in the electricity supply to the World and their use increases day after day. Because of the intermittency of a large-scale production system generates the need to develop clean energy storage systems. Hence, energy storage systems play is one of key elements in the energy transition. In this perspective, a green hydrogen is defined as an energy carrier thanks to its high energy density in relation to its negligible mass, not to mention its abundance in our environment, and its extraction, which does not contribute to any greenhouse gases. However, the production cost is not negligible. Hence, this work shows a numerical modelling of the heat balance from a green hydrogen production system using a thermal storage in a Metal Hydride (MH) tank for an electrification by Proton Exchange Membrane (PEM) fuel cell integrated into the production of heating, cooling and sanitary hot water (SHW) through the recovery of the heat released by the whole system combined with the technology of thermally activated cooling of an adsorber. This allows demonstrating that the green hydrogen can be an interesting solution according in the hydrogen production chain and in the tertiary sectors.
EN
This work demonstrates the study of the numerical modelling and a design of a compact energy generator based on green hydrogen. This generator aims allowing the energy storage, electricity, cold and heat productions as well as a supply the energy for the production of the sanitary hot water. The generator is considered to be powered by 30 solar cells panels and will mainly consist of a Proton Exchange Membrane (PEM) electrolyzer compiled with a Metal Hydride (MH) tank, a PEM fuel cell, and a system of heat exchangers sized to recover the heat from the electrolyzer, PEM fuel cell and MH tank. Furthermore, the generator will contain an adsorber to manage air conditioning (cooling and heating) and a production of the sanitary hot water. A converter block is included in the generator, in particular, a Buck-booster to raise the voltage of the solar panels and the DC-AC converter for the electricity consumption in the household. The desorption of the hydrogen contained in the tank MH will take place using the heating resistance. In overall, the designed generator is foreseen to have a dimension of 1800 × 1000 × 500 mm and its role is to allow integration of the hydrogen energy for the tertiary and residential sectors. As such it is a suitable choice of components for the cost reduction and high yield hydrogen production, storage, and consumption.
PL
Pozyskiwanie metanu z gazów kopalnianych stanowi jedno z najważniejszych zagadnień dotyczących eliminacji gazów cieplarnianych i w krajowych warunkach powinno być szeroko stosowane. Wynika to z faktu, że Polska jest największym w Europie emitentem metanu z kopalni do atmosfery. Istnieje kilka metod technologicznych wykorzystania gazów kopalnianych do celów energetycznych. W artykule przedstawiono nowatorskie rozwiązanie zastosowania tych gazów do trigeneracji, produkcji energii elektrycznej oraz ciepła i chłodu.
EN
Obtaining methane from mine gases is one of the most important issues related to the elimination of greenhouse gases, which should be widely used in domestic conditions. This is due to the fact that Poland is the largest emitter of methane into the atmosphere in Europe. There are several technological methods for the use of mine gases for energy purposes. The article presents an innovative solution for the use of these gases for trigeneration, electricity, heat and cold production.
PL
Pozyskiwanie metanu z gazów kopalnianych stanowi jedno z najważniejszych zagadnień dotyczących eliminacji gazów cieplarnianych, które w krajowych warunkach powinno być szeroko stosowane. Wynika to z faktu, że Polska jest największym w Europie emitentem metanu do atmosfery. Istnieje kilka metod technologicznych wykorzystania gazów kopalnianych dla celów energetycznych. W artykule przedstawiono nowatorskie rozwiązanie wykorzystanie tych gazów dla celów trigeneracji, produkcji energii elektrycznej, ciepła i chłodu.
EN
Obtaining methane from mine gases is one of the most important issues related to the elimination of greenhouse gases, which should be widely used in domestic conditions. This is due to the fact that Poland is the largest emitter of methane into the atmosphere in Europe. There are several technological methods for the use of mine gases for energy purposes. The article presents an innovative solution for the use of these gases for trigeneration, electricity, heat and cold production.
PL
Coraz wyższe wymagania w odniesieniu do efektywności energetycznej urządzeń i instalacji, powodują konieczność stosowania rozwiązań mających na celu minimalizowanie zużycia energii oraz ograniczenia zanieczyszczeń środowiska w postaci emisji substancji szkodliwych czy odpadów będących produktem procesu spalania paliw stałych. Odpowiedzią na tak postawione potrzeby są nowoczesne rozwiązania oparte na wysokosprawnych urządzeniach, jak również rozwiązania pozwalające wykorzystywać ciepło odpadowe. A wszystko po to, aby chronić środowisko, a jednocześnie oddziaływać w najbardziej efektywny sposób na proces wytwarzania energii i ciepła. Istotne znaczenie ma również rozwój technologii korzystających z odnawialnych źródeł energii, których zastosowanie ma spowodować zwolnienie tempa zużycia tradycyjnych, kopalnych nośników energii. W artykule przeanalizowano efekty zastosowania chłodziarki absorpcyjnej w danym układzie klimatyzacyjnym. Zaprezentowano ogólną charakterystykę źródeł skojarzonego wytwarzania energii elektrycznej, ciepła i chłodu (trójgeneracja lub CHCP) ze szczególnym naciskiem na wpływ zmiany źródła chłodu na pracę całego układu. Analiza została przeprowadzona na podstawie opracowań własnych dotyczących zmiany całego układu z chłodziarki absorpcyjnej na chłodziarkę sprężarkową. Przeanalizowano również wpływ tej zamiany na pracę całego układu oraz ponoszone koszty inwestycyjne oraz eksploatacyjne. Przeprowadzono także analizę korzyści związanych z możliwością wytwarzania chłodu przez chłodziarkę absorpcyjną pracującą na potrzeby klimatyzacji budynku szpitalnego.
EN
Increasingly higher requirements of energy efficiency of devices and installations make it necessary to use solutions aimed at minimizing energy consumption and reducing environmental pollution in the form of emissions of harmful substances or waste resulting from the process of burning solid fuels. The answer to such needs are modern solutions based on high-efficiency devices, as well as solutions that allow the use of waste heat. And all this is used in order to protect the environment and at the same time use energy and heat power in the most efficient way. Therefore, the improvement of energy efficiency use and energy production is needed as well as promotion of renewable energy use leading to reduce the consumption of traditional energy carriers. In this thesis an assessment of the absorption chiller performance is presented. The paper presents an overview of combined heating, cooling and power sources (called trigeneration or CHCP) considering the impact of changing the source of cold on the operation of the entire system. The analysis was carried out on the basis of own studies on the change of the entire system from an absorption chiller to a compressor chiller. The impact of this change on the operation of the entire system and the investment and operating costs incurred were also analyzed. The analysis of the benefits associated with the possibility of producing cold by an absorption chiller operating for the air conditioning needs of a hospital building was also carried out.
PL
Coraz wyższe wymagania efektywności energetycznej urządzeń i instalacji, powodują konieczność stosowania rozwiązań mających na celu minimalizowanie zużycia energii oraz ograniczenia zanieczyszczeń środowiska w postaci emisji substancji szkodliwych czy odpadów będących produktem procesu spa- lania paliw stałych. Odpowiedzią na tak postawione potrzeby są nowoczesne rozwiązania oparte na wysokosprawnych urządzeniach, jak również rozwiązania pozwalające wykorzystywać ciepło odpadowe. A wszystko po to, aby chronić środowisko, a jednocześnie wykorzystywać w najbardziej efektywny sposób moc energetyczną i cieplną. Istotne znaczenie ma również rozwój technologii korzystających z odnawialnych źródeł energii, których zastosowanie ma spowodować zwolnienie tempa zużycia tradycyjnych, kopalnych nośników energii. W artykule przeanalizowano efekty zastosowania chłodziarki absorpcyjnej w danym układzie klimatyzacyjnym. Zaprezentowano ogólną charakterystykę źródeł skojarzonego wytwarzania energii elektrycznej, ciepła i chłodu (trójgeneracja lub CHCP) ze szczególnym naciskiem na wpływ zmiany źródła chłodu na pracę całego układu. Analiza została przeprowadzona bazując na opracowaniach własnych dotyczących zmiany całego układu z chłodziarki absorpcyjnej na chłodziarkę sprężarkową. Przeanalizowano również wpływ tej zamiany na pracę całego układu oraz pono- szone koszty inwestycyjne oraz eksploatacyjne. Przeprowadzono także analizę korzyści związanych z możliwością wytwarzania chłodu przez chłodziarkę absorpcyjną pracującą na potrzeby klimatyzacyjne budynku szpitalnego.
EN
Increasingly higher requirements of energy efficiency of devices and installations make it necessary to use solutions aimed at minimizing energy consumption and reducing environmental pollution in the form of emissions of harmful substances or waste resulting from the process of burning solid fuels. The answer to such needs are modern solutions based on high-efficiency devices, as well as solutions that allow the use of waste heat. And all this is used in order to protect the environment and at the same time use energy and heat power in the most efficient way. Therefore, the improvement of energy efficiency use and energy production is needed as well as promotion of renewable energy use leading to reduce the consumption of traditional energy carriers. In this thesis an assessment of the absorption chiller performance is presented. The paper presents an overview of combined heating, cooling and power sources (called trigeneration or CHCP) considering the impact of changing the source of cold on the operation of the entire system. The analysis was carried out on the basis of own studies on the change of the entire system from an absorption chiller to a compressor chiller. The impact of this change on the operation of the entire system and the investment and operating costs incurred were also analyzed. The analysis of the benefits associated with the possibility of producing cold by an absorption chiller operating for the air conditioning needs of a hospital building was also.
EN
In the Arabian Gulf region, we can observe significant strain of the electricity system providing power also for cooling purposes. It is especially visible in the Kingdom of Saudi Arabia due to avalanche increase in the electricity demand for cooling purposes. Design and erection of a Multigeneration source in close proximity to the media recipients will decrease the infrastructure load and due to significant share of renewable energy, also decrease environmental footprint. The paper presents an innovative system for cooling, heating, power and desalinated water production based on a novel triplecomponent chiller configuration supplied from Combined Heat and Power source and Solar Panels Field. The system has been erected in King Abdulaziz City for Science and Technology (KACST). The presented system consists of Li-Br absorption chiller, adsorption chiller, compressor chiller, two Diesel internal combustion engines and solar panel field. The system has been designed and erected in a fully fuel-flexible manner enabling separate operation of each and every equipment in any possible configuration enabling verification of various operation strategies implementing fossil fuels as well as renewable heating.
PL
W rejonie Zatoki Perskiej obserwujemy znaczne obciążenie systemu elektroenergetycznego do-starczającego energię również do celów chłodniczych. Jest to szczególnie widoczne w Królestwie Arabii Saudyjskiej ze względu na lawinowy wzrost zapotrzebowania na energię elektryczną do celów chłodniczych. Zaprojektowanie i wybudowanie źródła multigeneracyjnego w bliskiej odległości od odbiorców mediów zmniejszy obciążenie infrastruktury, a dzięki znacznemu udziałowi energii odnawialnej zmniejszy również ślad środowiskowy. W artykule przedstawiono innowacyjny system do produkcji chłodu, ciepła, energii elektrycznej i wody odsolonej oparty na nowatorskiej trójelementowej konfiguracji agregatów chłodniczych zasilanych z silników kogeneracyjnych oraz kolektorów słonecznych. System został wzniesiony w King Abdulaziz City for Science and Technology (KACST). Prezentowany system składa się z agregatu sorpcyjnego Li-Br, agregatu adsorpcyjnego, agregatu sprężarkowego, dwóch silników spalinowych oraz pola kolektorów słonecznych. System został zaprojektowany i wykonany w sposób w pełni paliwowo-elastyczny, umożliwiający odrębną pracę każdego urządzenia w dowolnej możliwej konfiguracji, umożliwiający weryfikację różnych strategii działania, wdrażających paliwa kopalne oraz źródła odnawialne.
EN
This paper presents the possibility of using a high-efficiency trigeneration system to generate electricity, heat and cold for the needs of a large health care facility. The hospital building is an average of several buildings of the same class. It is a typical Polish object built in the second half of the twentieth century and subjected to thermal modernization consisting in insulation of external walls and roof and replacement of windows and external doors. Thermal modernization led the building to a condition that meets the technical requirements for year 2017. Therefore, the conclusions resulting from the work can be applied to the entire group of health care institutions. The demand for electricity was obtained as fifteen-minute periods, while the demand for heat and cold was calculated using the hourly method. The calculations were made on the basis of meteorological data for the Warszawa-Okęcie station. The choice of the most cost-effective option was determined by economic analysis. The considered variants were compared to the basic variant, which is the most typical solution, i.e. a compressor chiller. For the analyzed options, benefits compared to the baseline option were estimated. NPV indicators were calculated, which clearly stated the best scenario, for which electricity and gas prices was then performed.
PL
Polski system elektroenergetyczny jest obecnie w okresie transformacji wynikającej zarówno ze stanu technicznego jednostek wytwórczych energii elektrycznej, jak i z założeń polityki klimatycznej wyrażonych w Zielonym Ładzie. Proces transformacji jest odzwierciedlony w Polityce Energetycznej Polski do 2040 r. (PEP 2040) i zakłada duży wzrost niestabilnych źródeł OZE w miksie energetycznym. Stabilizacja tych źródeł będzie możliwa poprzez modernizację ciepłownictwa polegającą na zamianie źródeł ciepła na systemy kogeneracyjne. Kogeneracja stanie się technologią regulacyjną w systemie elektroenergetycznym i zacznie wykorzystywać na dużą skalę magazyny ciepła i chłodu również w okresie letnim. W pracy omówiono procesy transformacji polskiej energetyki oraz uwypuklono rolę ciepłownictwa w tym procesie, w szczególności kogeneracji i trigeneracji.
EN
The Polish power system is currently undergoing transformation resulting both from the technical condition of electricity generating units and from the assumptions of the climate policy expressed in the Green Deal. The transformation process is reflected in the Polish Energy Policy until 2040 (PEP 2040) and assumes a large increase in unstable renewable energy sources in the energy mix. The stabilization of these sources will be possible through the modernization of the heating sector by replacing old heat sources with cogeneration systems. Cogeneration will become a regulatory technology in the power system and will start to use large-scale heat and cold storage in the summer. The paper discusses the transformation processes of the Polish energy sector and emphasizes the role of heating in this process, in particular cogeneration and trigeneration.
PL
Podstawą wytwórczej części polskiego systemu elektroenergetycznego są węglowe elektrownie i elektrociepłownie. Około 12% energii elektrycznej wytwarza się w węglowej kogeneracji, co jest możliwe dzięki wyposażeniu dużych miast w rozległe sieci ciepłownicze. Na system elektroenergetyczny składają się również elektrociepłownie gazowe, elektrownie wodne, elektrownie wiatrowe, fotowoltaiczne. Energetyka tworzy spójny system dzięki wysoko- średnio- i niskonapięciowym liniom przesyłu oraz dystrybucji energii elektrycznej. Na system elektroenergetyczny mają również bezpośredni lub pośredni wpływ stosowane w ciepłownictwie pompy ciepła, ciepłownie geotermalne, biogazownie, instalacje solarne i technologie wschodzące, jak np. elektromobilność.
14
Content available remote Enhancing the exhaust heat recovery in integrated energy plant
EN
The efficiency of exhaust heat recovery in typical integrated energy plant on the base of reciprocating gas engines with absorption lithium-bromide chiller for combined electricity, heat and refrigeration supply of the factory Sаndorа-PepsiCо Ukraine is analyzed. The reserves of decreasing the heat exhausted into atmosphere are revealed on the base of monitoring data and their realization through conversion into refrigeration for cooling the engine cyclic air is proposed. Some scheme decisions of improved and innovative exhaust heat recovery systems providing deep heat conversing into refrigeration for engine cyclic air cooling are developeded.
EN
Straw-fired batch boilers, due to their simple structure and low operating costs, are an interesting option for heating systems dedicated to use in houses, farms, schools, industrial facilities and other buildings. Commercially available solutions include typical water boilers and air heaters with a thermal oil jacket. The high temperature of thermal oil (180-200_C) mean straw-fired devices can be used as a source of heat for micro scale cogeneration and trigeneration systems. The first part of this paper shows an experimental analysis of a micro scale cogeneration system based on modified Rankine Cycle operation. A 100 kWth straw-fired batch boiler with thermal oil jacket was used as a high temperature heat source. Thermal oil, heated in the boiler, was transferred respectively to the evaporator, superheater and oil/water emergency heat exchanger. The steam generated was conditioned and used to power a 20 hp steam engine. Cooling water, heated in the condenser, was pumped to a 4 m3 water tank connected to two air coolers. Control of the system operation was realized using a dedicated automation system based on the PLC controller. In the second part of this study, a micro scale cogeneration system was developed and modelled in TRNSYS software on the basis of the experimental installation. The dynamic operation conditions in terms of temperatures and powers were analyzed for the main components of the system (boiler, evaporator steam engine, condenser). Moreover, some modifications in the system construction were proposed to improve its performance. The results of the experimental tests were used to identify the main aspects of the considered system—temperature, pressure and power levels in oil, steam and water circuits and operating parameters of the steam engine. Dynamic simulations performed in TRNSYS pointed to the nominal operation scenario for the tested system and showed the great potential for further improvements in the system construction.
PL
W artykule opisano propozycję zastosowania trójgeneracji w budynku sanatorium „Rolnik" w Nałęczowie. Ze względu na uwarunkowania prawne zaproponowano dwa warianty trójgeneracji, które w pierwszej kolejności mają pokryć całkowite zapotrzebowanie budynku na energię elektryczną. Analiza ekonomiczna pokazuje, że takie rozwiązanie będzie w perspektywie 10-letniej opłacalne jedynie przy wsparciu systemowym (np. żółtych certyfikatów).
EN
The article presents a proposition of application of tri-generation system in sanatorium building „Rolnik” in Nałęczów. Considering the legislation aspects two solutions of the system have been taken into account. In both of them main goal is foulfill the electric energy demand for the building. Economic evaluation shows that the payback period meets the 10 years requirement only if financial support is provided.
PL
Wykorzystanie niskotemperaturowego ciepła odpadowego do napędzenia urządzeń chłodniczych staje się atrakcyjną alternatywą dla urządzeń sprężarkowych. Technologie adsorpcyjne oraz bazujące na nich urządzenia chłodnicze mogą być zasilane ciepłem o temperaturze rzędu 60°C. Otwiera to nowe obszary zastosowań, znajdujące się poza zasięgiem szerzej rozpowszechnionych systemów absorpcyjnych, wymagających zdecydowanie wyższych temperatur zasilania. Źródłem ciepła o tak niskiej temperaturze mogą być np. kolektory słoneczne lub miejska sieć ciepłownicza. To drugie źródło jest szczególnie atrakcyjne w sezonie letnim, ponieważ wykorzystanie ciepła odpadowego z procesu produkcji energii elektrycznej poprawia efektywność systemów trigeneracyjnych. W związku z tym tego typu rozwiązania są coraz częściej brane pod uwagę przez inwestorów jako interesująca, ekologiczna, coraz bardziej atrakcyjna cenowo alternatywa dla układów kogeneracyjnych. W artykule omówiono pilotażową sorpcyjną instalację chłodniczą przeznaczoną do produkcji wody lodowej na potrzeby stołówki w budynku biurowym. Do zasilania instalacji służy ciepło z sieci ciepłowniczej, wspieranej dodatkowo przez układ płaskich kolektorów słonecznych. System jest zainstalowany w nowo wybudowanym biurowcu we Wrocławiu, a w jego skład wchodzi układ 36 kolektorów, chłodziarka absorpcyjna bromowo-litowa oraz tandemowa chłodziarka adsorpcyjno-sprężarkowa, wraz z osprzętem towarzyszącym. W pracy skupiono się na rezultatach badań eksperymentalnych rzeczywistych wskaźników wydajnościowych i efektywnościowych tandemowej chłodziarki adsorpcyjnej. Badania realizowane są we współpracy pomiędzy Politechniką Wrocławską, Politechniką Śląską oraz Fortum Power and Heat Polska Sp. z o.o.
EN
The use of low-temperature waste heat to drive refrigeration systems is becoming an attractive alternative to compressor devices. Adsorption technologies and refrigeration devices based on them can be supplied with heat at a temperature of 60°C. This opens up new areas of application that are beyond the reach of wider-spread absorption systems that require significantly higher hot water temperatures. The source of heat at such a low temperature can be, for example, solar collectors or a district heating network. This second source is particularly attractive in the summer season, because the use of waste heat from the electric energy production improves the efficiency of trigeneration systems. Therefore, such solutions are increasingly considered by investors as an interesting, ecological and more affordable alternative to cogeneration systems. The article discusses a pilot sorption cooling installation intended for the production of chilled water for the canteen in an office building. Heat is supplied to the installation from the district heating, supported additionally by a system of flat solar collectors. The system is installed in a newly built office building in Wrocław, and it comprises a system of 36 collectors, a lithium-bromine absorption chiller and a tandem adsorption-compressor chiller, along with accompanying accessories. The work focuses on the results of experimental studies of the real performance and efficiency indicators of the tandem adsorption chiller. The research is carried out in cooperation between Wrocław University of Technology, Silesian University of Technology and Fortum Power and Heat Polska Sp. z o.o.
PL
W artykule przedstawiono rozwiązania techniczne i projektowe, zastosowane w zaprojektowanym w nowo powstałym w KGHM CUPRUM Zakładzie Budownictwa Przemysłowego i Badań Materiałowych trigeneracyjnym systemie przygotowywania wody lodowej do celów chłodniczych powietrza kopalnianego, bazującym na skojarzonej produkcji energii elektrycznej, chłodu i ciepła podczas spalania paliwa gazowego w silnikach gazowych. Drugim istotnym poruszonym tu elementem jest ewolucja procesu projektowania obiektów o wysokim stopniu skomplikowania, ze zwróceniem szczególnej uwagi na nowoczesne narzędzia projektowe, umożliwiające proces projektowania w technologii BIM (Building Information Modeling), w wirtualnej rzeczywistości.
EN
The paper presents technical and design solutions applied in the KGHM CUPRUM's Underground Construction Engineering and Material Testing Department. Those methods were used for the trigeneration system of chilled water preparation for cooling purposes of mine air based on the combined production of electricity, cold and heat during the combustion of gaseous fuel in gas engines. The second important element raised in this paper is the evolution of the process of designing objects with a high degree of complexity, paying special attention to modern design tools enabling the design process in BIM (Building Information Modeling) technology in virtual reality.
PL
Względne straty przesyłania ciepła do odbiorców w sezonie letnim mają istotny wpływ na efektywność ekonomiczną i energetyczną Przedsiębiorstw Energetyki Cieplnej (PEC). Zapotrzebowanie na chłód do klimatyzacji i procesów technologicznych w kraju systematycznie rośnie, osiągając szczyt w okresie lata, tj. najcięższym z punktu widzenia dostępności energii elektrycznej z krajowej sieci. Przedstawiano charakterystykę komercyjnie dostępnych na rynku urządzeń sorpcyjnych (absorpcyjnych i adsorpcyjnych) zasilanych ciepłem, które mogą produkować chłód zastępując konwencjonalne urządzenia sprężarkowe zasilane energią elektryczną. Dzięki temu zwiększa się sprzedaż ciepła z sieci ciepłowniczej i zmniejsza zapotrzebowanie na energię elektryczną z systemu elektroenergetycznego latem. Przeanalizowano możliwość modernizacji sprężarkowej maszynowni chłodniczej produkującej chłód do klimatyzacji budynku biurowego na maszynownie sorpcyjną zasilaną ciepłem sieciowym. Określono także korzyści systemowe dzięki zmniejszeniu zapotrzebowania na energię elektryczną z krajowego systemu elektroenergetycznego oraz zwiększeniu zapotrzebowania na ciepło z miejskiej sieci ciepłowniczej. Proponowane rozwiązania umożliwia ograniczenie zapotrzebowania na energię elektryczną do celów klimatyzacyjnych o ponad 88% oraz zmniejszenie względnych strat przesyłania w sezonie letnim z ~25% do ~18%. Pokrycie całego zapotrzebowania na chłód w kraju za pomocą rozwiązań sorpcyjnych oznaczałoby zwiększenie sprzedaży ciepła przez PEC o 21,5 PJ rocznie.
EN
Relative heat losses during transportation of hot water to the consumers in the summer have a significant impact on the economic and energy efficiency of the District Heating Companies (DHC). The demand for process cooling, as well as air-conditioning, in Poland is steadily growing, reaching its peak in the most disadvantageous moment from the point of view of electricity supply - summer season. Characteristics of available on the market, supplied by heat, sorption chillers (absorption and adsorption) capable of retrofitting existing, supplied by electricity, chilling solutions, enabling increase in summer heat demand from the network and decrease electricity demand from the grid, has been presented. The possibility of retrofitting of a conventional, electric chiller machine room producing cooling capacity for located in Poland office building’s air-conditioning for district heat supplied sorption one, has been presented. Also, benefits for the system had been identified in the area of reducing electricity demand from the national electricity system and increasing the demand for heat from the district heating network. The proposed solution reduces the demand for electricity for air- -conditioning by more than 88% and reduces relative heat losses during summer from ~ 25% to ~ 18%. Covering the entire demand for cooling capacity in Poland using sorption chillers would lead to an increase in heat sales total 21.5 PJ per year by DHC.
PL
W ostatnich dekadach światowe zużycie energii do produkcji chłodu znacznie wzrasta. W 2016 roku zużycie energii na potrzeby klimatyzacji budynków wyniosło w Europie ok. 150 TWh i jest najszybciej rosnącą składową łącznego zapotrzebowania budynków na energię. Obecnie, w zasadzie całe zapotrzebowanie na chłód jest pokrywane przez urządzenia zasilane energią elektryczną. W Polsce stanowi to również problem, bo dostępność energii elektrycznej z Krajowego Systemu Elektroenergetycznego właśnie latem jest najmniejsza. Od ponad dekady widać wyraźny trend wypełniania tzw. „doliny letniej”, tj. mniejszego niż zimowe zapotrzebowanie na energię elektryczną. Trend ten jest ponad dwukrotnie intensywniejszy niż średnioroczny wzrost zapotrzebowania na energię elektryczną w kraju. W artykule opisano wytwarzanie chłodu za pomocą agregatów sorpcyjnych zasilanych ciepłem sieciowym. Zaproponowano wykorzystanie „wolnych mocy cieplnych” w sezonie letnim z Miejskich Systemów Ciepłowniczych do produkcji chłodu. Szczegółowo przeanalizowano modele układów hybrydowych, tj. sorpcyjno-sprężarkowych do wytwarzania chłodu na potrzeby klimatyzacji budynków. Zastosowanie hybrydowych źródeł chłodu zmniejsza zapotrzebowania na moc i energię elektryczną oraz zwiększa zapotrzebowania na ciepło, przy pełnym pokryciu zapotrzebowania odbiorców na chłód. Wyniki obliczeń przedstawiono w formie tabelarycznej. Opisano też wpływ zastosowania tych modeli na sektor ciepła systemowego w Polsce.
EN
Over the past decades, global energy consumption for cold production has increased significantly. In 2016, energy consumption for Air Conditioning (AC) of buildings in Europe amounted to about 150 TWh and is the fastest growing component of the total energy demand of buildings. Presently, nearly whole demand for AC is met by electrically powered chillers. This is also significant problem in Poland, as the availability of electricity from the National Grid is the lowest in summer. For over a decade there has been a clear trend towards filling the so called “summer valley” i.e. lower demand for electricity, than the winter one. This trend is more than twice as intense as the average annual growth electricity demand in the country. The article presents the characteristics of chillers with the use of sorption units powered by heat from heating network. It was proposed to use the “free heat capacities” in the summer season from the District Heating Systems for the production of chilled water. Hybrid models, i.e. sorption – compressors units for cooling generation for AC of buildings have been analyzed in detail. The use of hybrid cooling sources reduces the demand of power electricity and increases the demand for heat on an national scale, while fully covering the demand for cooling. The results of the calculations are presented in tabular form. The impact of the application of these models on the heating sector in Poland has also been described.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.