Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  szybkość odkształcania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The dynamic increase factor (DIF) of the concrete material strength, obtained using a split Hopkinson pressure bar (SHPB), includes structural effects that do not precisely reflect the real strain-rate effect of concrete. To further clarify the real strain-rate effects of rubberised concrete (RC), an experimental investigation regarding the dynamic compressive response of ordinary concrete (NC) and RC with three rubber contents (10%, 20%, and 30%) was performed in this study. Additionally, based on a dynamic constitutive model, i.e., the Karagozian and Case (K&C) concrete model, numerical SHPB tests were conducted using the LS-DYNA software. According to the experimental results, all parameters of the K&C model were discussed, and the damage factors were modified to satisfy the mechanical properties of RC. After validating the numerical model, it was observed that the experimental DIF included the inertial enhancement and the real DIF. Moreover, because rubber particles effectively reduce the density and improve the deformation capacity of concrete, the real strain-rate effect of RC was found to be more rate-sensitive than that of NC by analysing the radial stress distribution. In addition to lateral inertia, another external source, namely, the interface friction between the specimen and bars, which can produce lateral confinement, was further studied. It was found that interface friction significantly contributes to lateral confinement; however, as the strain rate increased, the impact generally decreased. Finally, the mechanism of the strain-rate effect of RC was clarified.
EN
The fracture and fragmentation of concrete under static and dynamic loads are studied. The uniaxial compressive strength test is employed to study the concrete behavior under static loads while the split Hopkinson pressure bar is used to study the dynamic behavior of the concrete under static loads. The theories for acquiring the stress, strain and strain rate of the concrete in the dynamic test by Hopkinson pressure bar has been introduced. The fracture patterns of the concrete in the uniaxial compressive test have been obtained and the static concrete compressive strengths have been calculated. The fracture patterns of the concrete in the uniaxial compressive test have been obtained and the static concrete compressive strengths have been calculated. The fracture and fragmentation of the specimen under dynamic loads have been acquired and the stress-strain curves of concrete under various impact loads are obtained. The stress-strain curve indicates a typical brittle material failure process which includes existing micro-fracture closure stage, linear-elastic stage, nonlinear-elastic stage, and post-failure stages. The influence of the loading rate for the compressive strength of the concrete has compared. Compared with the concrete under static loads, the dynamic loads can produce more fractures and fragments. The concrete strength is influenced by the strain rate and the strength increases almost linearly with the increase of the strain rate.
EN
Particularly in terms of carbon fiber (CF) rovings and further high performance fibers, it is a highly demanding task to clamp technical yarns with low elongations at break during high-speed tensile tests due to their sensitivity to shear stress. For fibers to be tested, a low elongation at break results in short testing times and requires high acceleration. In this paper, four different yarn grips that can be applied with various test machines will be introduced and compared to a wedge screw grip. By using most sensitive CF rovings, advantages and disadvantages of these gripping devices will be qualitatively evaluated by means of testing machines with test speeds of up to 20 m/s and strain rates of up to 200 s-1, respectively. Hence, the reproducibility and precision of test results were considerably enhanced by optimizing the geometry and mass of yarn grips. Moreover, theoretical approaches and calculations for the design of yarn grips suitable for test speeds of up to 100 m/s will be presented.
PL
Przedstawiono różnicę pomiędzy odkształcaniem quasi-statycznym a dynamicznym materiałów metalicznych. Dla dużych szybkości odkształceń naprężenie (odkształcenie) w ciałach przemieszcza się z określonymi prędkościami jako fala. Odkształcanie dynamiczne związane jest z rozchodzeniem się fali, natomiast statyczne można rozpatrywać jako okresowe stany równowagi. Przy niedużych szybkościach odkształceń ciało pozostaje w warunkach izotermicznych, a dla dynamicznych procesów odkształcenia jest to proces adiabatyczny. Wprowadzono pojęcie naprężenia progowego ?^ (ang. mechanical threshold stress), które jest maksymalną wartością naprężenia dla danego rodzaju materiału metalicznego w temperaturze 0 K lub, ekwiwalentnie, przy nieskończenie dużej szybkości odkształcenia. Z obniżeniem temperatury następuje zmniejszenie się ruchliwości dyslokacji. Zjawisko to jest związane ze spadkiem zdolności poruszania się atomów w sieci w obniżonych wartościach temperatury, których ruchy drgające całkowicie ustają w temperaturze 0 K. Pojęcie naprężenia progowego zostało zobrazowane za pomocą przykładu obliczeniowego.
EN
The article presents the difference between the quasi-static and dynamic strain of metallic materials. At the high strain rate, stress (strain) in metallic materials moves with specified velocities as a wave. The dynamic deformation is related to the propagation of the wave while the static deformation can be seen as temporary states of equilibrium. At small speed deformations, the body remains in isothermal conditions, while the dynamic strain processes are the adiabatic processes. The concept of the mechanical threshold stress ?^ has been introduced, which is the maximum stress value for the particular type of metallic material for 0 K or, equivalently, infinitely high speed deformation. With the decrease of the temperature, there is a reduction of the dislocation mobility. This phenomenon is associated with a decrease in mobility of atoms in the network at reduced temperatures, which vibrating movement completely stops at 0 K. The concept of the mechanical threshold stress has been illustrated using the calculation example.
EN
The paper presents methods of determining creep parameters based on uniaxial compression testing. Relevant analyses were carried out on the basis ofthe time resistance concept. Evaluation of the strain-time one-dimensional behaviour ofsoil is also described. The aim of this research was to put some light on methods of determination of creep parameters used in various constitutive creep models and to develop the reliable interpretation approach. In this work the values for creep parameters were defined with the help of oedometer tests on reconstituted clay samples from Chmielów.
6
Content available Contemporary overview of soil creep phenomenon
EN
Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.
EN
The paper concerns investigation of the credibility of tectonic interpretation of GNSS strain rates. The analysis was focused on stable regions, where the crustal deformations are small and the reliability of GNSS velocities is questionable. We are showing how the unreliable motion of stations affects calculated strains around them. We expressed distribution of local principal strains by a sinusoidal function and used them to investigate the significance of strain distortion. Then we used this method to investigate real motions of GNSS stations. As a test object we used Polish GNSS stations belonging to the ASG-EUPOS network. Station velocities were estimated on the basis of the 4.5 years of observations. The results let us identify stations that disturb the obtained local GNSS strain rate field. After verification and exclusion of some stations, the new GNSS strains show a much greater internal compatibility and also better fit to the directions of lithosphere stresses.
EN
The compressive properties of 3D angle-interlock woven/epoxy resin composites with various carbon nanotube (CNTs) contents were investigated under quasi-static and high strain rate loading to evaluate the compressive failure modes, which were influenced by various CNT contents and different strain rates. The results indicated that the stress strain curves were strain rate sensitive, and the compressive failure stress of composites with various CNT contents were increased with a change the strain rates and CNT contents. The compressive failure modes of 3D angle-interlock woven composites without CNT tended to be in shear deformation, delamination fibre breakage and matrix crack together, and the failure modes of 3D angle-interlock woven composites with high CNT contents presented delamination and shear deformation.
PL
Badano właściwości ściskające kompozytów 3D wzmacnianych tkaninami o skośnym splocie interlokowym modyfikowanych nanorurkami węglowymi. W celu wyznaczenia uszkodzeń powstałych na skutek ściskania, na które wpływa zawartość nanorurek i szybkości odkształcania, badania przeprowadzono pod obciążeniem quasi-statycznym i przy dużych szybkościach ściskania. Wyniki wykazały, że krzywe ściskania zależały od szybkości odkształcania i zawartości nanorurek. Uszkodzenia mają charakter rozwarstwienia i deformacji pod wpływem naprężeń ścinających.
EN
This paper presents a model application of Cause and Effect matrix operations support designers and manufacturing engineers in the preparation stage production of automobile components from sheet metal blanks that enables you to analyze the suitability of different types of materials in terms of safety, weight, emissions and costs. Deformation characteristics are analyzed for stress components deformation zones to move and bend. To verify the appropriateness of the proposed model were experimentally determined strength and deformation characteristics of deep-drawing steel DX 54 D, micro alloyed steel HSLA, high-strength multi-phase steels DP 600 and TRIP, anti-corrosive austenitic steels A304 2B and ferrite A 430 2B by tensile test and three-point bending. The analysis of the results obtained Cause and Effect matrix shows that for the front impact deformation zones are more suitable austenitic steels respectively. TWIP and for zones flanking the passenger compartment (cab) are preferable DP and TRIP steels.
PL
W artykule przedstawiono zastosowanie modelu "Przyczyna i Skutek", pozwalającego na operacje na macierzach, wspomagającego projektantów i inżynierów produkcji w fazie przygotowania produkcji komponentów samochodowych z metalowych półwyrobów (arkuszy blachy), który pozwala analizować przydatność różnych materiałów pod względem bezpieczeństwa, wagi, emisji i kosztów. Charakterystyki odkształcenia są analizowane w odniesieniu do stref zgniotu, gdzie elementy przemieszczają się i wyginają. Aby zweryfikować zasadność proponowanego modelu zostały określone doświadczalnie charakterystyki siły i odkształcenia, za pomocą testu rozciągania i zginania trzypunktowego: głęboko tłoczonej stali DX 54 D, stali mikrostopowych HSLA, wysoko-wytrzymałej stali wielofazowej DP 600 i TRIP, antykorozyjnych stali austenitycznych A304 2B i ferrytowych 430 2B. Analiza wyników uzyskanych z modelu macierzowego "Przyczyna i Skutek", pokazała, że dla przednich stref zgniotu lepsze są stale austenityczne, odpowiednio TWIP, a do stref otaczających kabinę pasażerską (cab) korzystniejsze są stale DP i TRIP.
PL
W artykule przedstawiono wpływ obróbki cieplno-plastycznej w zakresie temperatury odkształcania 700÷1200 °C przy szybkościach odkształcania 0,01 s-1 oraz 6,5 s-1 dla stali niskowęglowej z dodatkiem boru na rodzaj i udziały objętościowe produktów przemiany austenitu po OCP.
EN
The effect of thermomechanical working in temperature range 700-1200 °C at strain rate 0,01 s-1 and 6,5 s-1 on type and volume fraction of austenite phase transformation products was investigated in low carbon steel with boron addition.
11
PL
Przedstawiono wyniki badania wpływu temperatury (23-100°C) i szybkości odkształcania przy ściskaniu (0,0208-20,8min-1) na charakterystyki mechaniczne i wartości wybranych wskaźników wytrzymałościowych dotwardzonego (80°C/2h) tworzywa epoksydowego "EPY®", stosowanego na podkładki fundamentowe maszyn. Sprawdzono możliwości wykorzystania teorii deformacji plastycznej Eyringa i Robertsona do prognozowania granicy plastyczności (...) tego tworzywa w zależności od temperatury i szybkości odkształcania. W tym celu porównano określone doświadczalnie i obliczone na podstawie tych teorii wartości ... w całym wspomnianym zakresie temperatury i szybkości odkształcania. Uzyskany dobry stopień zgodności świadczy o przydatności obu testowanych modeli teoretycznych do prognozowania rzeczywistej granicy plastyczności badanego tworzywa, co umożliwia przewidywanie jego zachowania się w różnych warunkach eksploatacji.
EN
The article presents the results of investigation of the effects of temperature (23-100°C) and compressive strain rate (0.0208-20.8min-1) on the mechanical characteristics of post-cured (at 80°C, 2h) EPY® epoxy material (applied for machine foundation chocks) and on the values of its selected strength parameters (Fig. 1-6). The possibilities of use of Eyring and Robertson plastic deformation theories to predict the yield stress (...) of this polymer, dependently on the temperature and strain rate were verified. So the agreement of ... values experimentally determined and calculated on the basis of the theories has been evaluated for the whole mentioned ranges of temperature and strain rate values (Fig. 7 and 8). The good agreement obtained indicates the usefulness of both theoretical models tested for prediction of true limiting yield stress of the polymeric material investigated. This makes possible to predict the material behavior in various service conditions.
PL
Przedmiotem badań, opisanych w tej pracy, było specjalne tworzywo epoksydowe o nazwie handlowej EPYŽ, stosowane na podkładki fundamentowe maszyn i urządzeń okrętowych, a ostatnio także wielu innych ciężkich maszyn i urządzeń lądowych. Odlewanie z tego tworzywa podkładek fundamentowych na gotowo, bezpośrednio pod odpowiednio ustawionym obiektem (np. silnikiem napędu głównego statku), znacznie upraszcza montaż ciężkich maszyn i urządzeń, dając w efekcie wiele korzyści techniczno-ekonomicznych i eksploatacyjnych. Należy jednakże przy tym brać pod uwagę fakt, że właściwości mechaniczne powstałych w ten sposób podkładek fundamentowych zależą nie tylko od składu tworzywa polimerowego, ale także w dużym stopniu od technologii ich wytwarzania i warunków eksploatacji, głównie temperatury i szybkości odkształcania. Celem prac, przedstawionych w tym artykule, było zbadanie procesu dotwardzania tworzywa EPYŽ oraz określenie wpływu temperatury i szybkości odkształcania na właściwości mechaniczne tego tworzywa jako materiału konstrukcyjnego w zastosowaniu na podkładki fundamentowe maszyn i urządzeń. Badania procesu dotwardzania tworzywa przeprowadzono metodą różnicowej kalorymetrii skaningowej (DSC). Wyniki badań obrazują termogramy przedstawione na rysunku 1. Charakterystyki mechaniczne tworzywa przy obciążeniu ściskającym, w różnych temperaturach (od 22 do 160°C) i przy różnych szybkościach odkształcania (od 0,0208 do 20,8 min(-1)), oraz wartości wybranych wskaźników wytrzymałościowych wyznaczono za pomocą skomputeryzowanej maszyny wytrzymałościowej INSTRON. Wyniki tych badań przedstawiono na rysunkach 2-5. Analiza uzyskanych wyników badań eksperymentalnych wykazała dobrą ich zgodność z równaniem Eyringa (2). Wynika z tego, że wytrzymałość na ściskanie dotwardzonego tworzywa rośnie liniowo wraz z logarytmem szybkości jego odkształcania (rys. 6). Natomiast wzrost temperatury pomiaru (w zakresie od 22 do 100°C) badanego tworzywa powoduje, że jego wrażliwość na zmianę szybkości odkształcania maleje (rys. 6). Uzyskano także dobrą zgodność wyników badań doświadczalnych z empirycznym równaniem Lessera (4), co umożliwia prognozowanie wytrzymałości na ściskanie dotwardzonego tworzywa EPYŽ w zależności od temperatury pomiarowej (rys. 7). Przeprowadzone badania umożliwiają pełniejszą ocenę zasadniczych właściwości mechanicznych badanego tworzywa EPYŽ jako materiału konstrukcyjnego, stosowanego w montażu ciężkich maszyn i urządzeń, eksploatowanych w różnych warunkach termicznych, przy różnych obciążeniach statycznych i dynamicznych.
EN
The object of the investigations described in this article was a special cpoxy material, known under its trade name EPYŽ, which is applied to foundation chocks of ships' machinery and installations, and also in many other heavy land-based machines. Casting of foundation chocks from this material on the spot, directly under an installed object (e.g. a ship's main engine) considerably simplifies the assembling technology of heavy machines and gives a lot of technical, economic and maintenance advantages. However, it must be taken into account that mechanical properties of foundation chocks obtained in this way depend not only on the chemical composition of the polymer but also on the production technology and operating conditions of the chocks - and particularly on the temperature and the strain rate. The aim of the studies presented in the article was to investigate the postcuring process for the EPYŽ material and the effect of the temperature and strain rate on the mechanical properties of this material too. The postcuring process of the EPYŽ material was investigated by DSC method. The obtained DSC thermograms are shown in Figure 1. The mechanical characteristics and the values of some selected comprcssive strength parameters for the EPYŽ material subjected to load at various temperatures (from 22 to 160°C) and various strain rates (from 0.0208 to 20.8 min(-1) were determined by means of a computerized testing machine INSTRON. The results of these investigations are shown in Figures 2 to 5. The results of the tests showed their good fit to the Eyring equation (2). Consequently, the compressive strength of the postcured EPYŽ material increases lineally together with the logarithm of strain rate (Fig. 6). However, elevated test temperatures (in the range from 22 to 100°C) of the material led to a decrease of its sensitivity to strain rate changes (Fig. 6). The results of the tests proved to be in good fit with the results calculated using the Lesser empirical equation (4) which allows compressive strength forecasting of the postcured EPYŽ material depending on the temperature of measurement (Fig. 7). The performed investigations make it possible to carry out a more comprehensive evaluation of the essential mechanical properties of the EPYŽ material treated as a structural material used for assembling of heavy machines and installations which work in various thermal and loading conditions.
PL
Przedmiotem badań, przedstawionych w tej pracy, jest specjalne tworzywo epoksydowe o nazwie handlowej EPYŽ, stosowane na podkładki fundamentowe maszyn i urządzeń okrętowych, a ostatnio także wielu innych ciężkich maszyn i urządzeń lądowych. Odlewanie z tego tworzywa podkładek fundamentowych na gotowo, bezpośrednio pod odpowiednio ustawionym obiektem (np. silnikiem napędu głównego statku), upraszcza znacznie technologie montażu ciężkich maszyn i urządzeń, dając w efekcie wiele korzyści techniczno-ekonomicznych oraz eksploatacyjnych. Właściwości mechaniczne tego tworzywa determinowane są w dużym stopniu czynnikami związanymi z technologią wytwarzania podkładek fundamentowych, a zwłaszcza warunkami ich utwardzania, jak również z warunkami ich eksploatacji, głównie temperaturą i szybkością odkształcania. Przeprowadzono badania przebiegu procesu utwardzania tworzywa EPYŽ metodą różnicowej kalorymetrii skaningowej (DSC), które obrazują termogramy przedstawione na rysunku 1. Za pomocą skomputeryzowanej maszyny wytrzymałościowej INSTRON wyznaczono charakterystyki mechaniczne tworzywa dla różnych jego stanów utwardzenia przy różnych szybkościach odkształcania. Wyniki tych badań przedstawiono na rysunkach 2, 3 i 6. Dokonano analizy wpływu szybkości odkształcania na charakterystyki mechaniczne i wyznaczono wartości wybranych wskaźników wytrzymałościowych przy ściskaniu, istotnych dla praktycznych zastosowań tworzywa EPYŽ utwardzonego w 22 š1°C (rys. 4), jak i dotwardzanego w różnych temperaturach (od 40 do 100°C) (rys. 6). Analiza uzyskanych wyników badań właściwości mechanicznych wykazała, że mogą one być dobrze opisane za pomocą równania Eyringa (1) (rys. rys. 5 i 7). Oznacza to w efekcie, że wytrzymałość na ściskanie badanego tworzywa, w danym stanie jego utwardzenia, rośnie liniowo wraz z logarytmem szybkości jego odkształcania (rys. 5). Wzrost temperatury dotwardzania tego tworzywa (w zakresie od 40 do 100°C) powoduje, że jego wrażliwość na zmianę szybkości odkształcania nieznacznie maleje (rys. 7). Przeprowadzone badania umożliwiają pełniejszą ocenę zasadniczych właściwości mechanicznych badanego tworzywa EPYŽ jako materiału konstrukcyjnego, stosowanego w montażu ciężkich maszyn i urządzeń, eksploatowanych w różnych warunkach termicznych, przy różnych obciążeniach statycznych i dynamicznych.
EN
The object of the investigations described in this paper is a special epoxy material of the trade name EPYŽ that has been applied to foundation chocks of ship's machinery and installations, and also to many other heavy land-based machines lately. Casting of foundation chocks from this material on the spot, directly under an installed and suitably positioned object (e.g. ship's main engine) considerably simplifies the assembling technology of heavy machines. This technology offers a number of technical, economic and operational advantages. The mechanical properties of this material are determined to a large extent by factors bound with the production technology of foundation chocks and especially by curing conditions as well as by operating conditions, mainly by the temperature and strain rate. The course of curing process for EPYŽ material was investigated by DSC method. The obtained DSC thermograms are shown in Figure 1. The mechanical characteristics of the material for its different cure states at various strain rates were determined by a computerized testing machine INSTRON. The results of these tests arc shown in Figures 2, 3 and 6. Strain rate effect on the mechanical characteristics of the material was subjected to an analyse. The values of some chosen cornpressive strength parameters, which are essential for practical applications of EPYŽ material both cured at 22 š1°C (Fig. 4) and postcured at various temperatures (from 40 to 100°C) (Fig. 6), were determined. An analysis of the results obtained from the tests showed that the mechanical properties of EPYŽ material can be well described by means of the Eyring equation (1) (Figs. 5 and 7). This means that compressive strength of the investigated material in a given curing state linearly increases with the logarithm of strain rate (Fig. 5). An increase of the postcuring temperature of the material (in the temperatures ranging from 40 to 100°C) results in diminishing its sensitivity to the change of strain rate (Fig. 7). The presented paper makes it possible to better understand the essential mechanical properties of EPYŽ material treated as a structural material and used to assemble heavy machines and installations which operate in various thermal and loading conditions.
EN
Results of static and dynamic compression} tests for two types of glass fibre-reinforced polypropylene composites are presented. Stress-strain curves showing the influence of the strain rate on the composite mechanical properties have been obtained. A three-dimensional description of the material behavior during the deformation has been developed. The material constitutive parameters have been calculated. Specification of the parameters and description of the methods used for their identification have been worked out. The results are discussed in terms of the deformation processes and the material non-homogeneity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.