Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 205

Liczba wyników na stronie
first rewind previous Strona / 11 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  steam turbine
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 11 next fast forward last
EN
Diverse forms of environmental pollution arise with the introduction of materials or energy that exert adverse effects on human health, climate patterns, ecosystems, and beyond. Rigorous emission regulations for gases resulting from fuel combustion are being enforced by the European Union and the International Maritime Organization (IMO), directed at maritime sectors to mitigate emissions of SOx, NOx, and CO2. The IMO envisions the realisation of its 2050 targets through a suite of strategies encompassing deliberate reductions in vessel speed, enhanced ship operations, improved propulsion systems, and a transition towards low and zero-emission fuels such as LNG, methanol, hydrogen, and ammonia. While the majority of vessels currently depend on heavy fuel or low-sulphur fuel oil, novel designs integrating alternative fuels are gaining prominence. Technologies like exhaust gas purification systems, LNG, and methanol are being embraced to achieve minimised emissions. This study introduces the concept of a high-power combined ship system, composed of a primary main engine, a diesel engine, and a steam turbine system, harnessing the energy contained within the flue gases of the main combustion engine. Assumptions, constraints for calculations, and a thermodynamic evaluation of the combined cycle are outlined. Additionally, the study scrutinises the utilisation of alternative fuels for ship propulsion and their potential to curtail exhaust emissions, with a specific focus on reducing CO2 output.
EN
The ever-increasing demand for electricity and the need for conventional sources to cooperate with renewable ones generates the need to increase the efficiency and safety of the generation sources. Therefore, it is necessary to find a way to operate existing facilities more efficiently with full detection of emerging faults. These are the requirements of Polish, European and International law, which demands that energy facilities operate with the highest efficiency and meet a number of restrictive requirements. In order to improve the operation of steam power plants of electric generating stations, thermal-fluid diagnostics have been traditionally used, and in this paper a three-hull steam turbine, having a high-pressure, a medium-pressure and a low-pressure part, has been selected for analysis. The turbine class is of the order of 200 MW electric. Genetic algorithms (GA) were used in the process of creating the diagnostic model. So far, they have been used for diagnostic purposes in gas turbines, and no work has been found in the literature using GA for the diagnostic process of such complex objects as steam turbines located in professional manufacturing facilities. The use of genetic algorithms allowed rapid acquisition of global extremes, that is efficiency and power of the unit. The result of the work undertaken is the possibility to carry out a full diagnostic process, meaning detection, localization and identification of single and double degradations. In this way 100 % of the main faults are found, but there are sometimes additional ones, and these are not perfectly identified especially for single time detection. Thus, the results showed that with a very high success rate the simulated damage to the geometrical elements of the steam turbine under study is found.
PL
W artykule przedstawiono wyniki badań materiałów wirników turbin parowych z niskostopowych stali typu Cr-Mo-V o różnym stopniu wyczerpania. Celem było określenie przydatności tych materiałów do dalszej eksploatacji po znacznym przekroczeniu obliczeniowego czasu pracy. Oceny stanu mikrostruktury dokonano na podstawie ujawnionych obrazów struktury w skaningowym mikroskopie elektronowym oraz stopnia rozwoju procesów wydzieleniowych po rentgenowskiej analizie składu fazowego osadów węglików. Oceny właściwości użytkowych dokonano na podstawie uzyskanych wyników właściwości mechanicznych w temperaturze pokojowej i podwyższonej oraz wyznaczonej trwałości resztkowej i resztkowej rozporządzalnej w skróconych próbach pełzania, a także na podstawie szybkości pełzania z krzywych pełzania dla parametrów temperaturowo-naprężeniowych odpowiadających eksploatacyjnym. Zaproponowano schemat zmian w strukturze badanych stali odniesionych do stopnia wyczerpania.
EN
The article presents the results of tests of materials for steam turbine rotors made of low-alloy Cr-Mo-V steels with various degrees of depletion. The aim was to determine the suitability of these materials for further use after exceeding the design operating time. The state of the microstructure was evaluated based on revealed images of the structure in the scanning electron microscope and the degree of development of the separation processes based on the X-ray analysis of the phase composition of the carbide deposits. The functional properties were evaluated based on the obtained results of mechanical properties at room and elevated temperatures, as well as the determined residual and residual disposable durability in abbreviated creep tests and creep rates from creep curves for temperature and stress parameters corresponding to operational ones. A scheme of changes in the structure of the tested steels related to the degree of exhaustion was proposed.
EN
The demand for more flexible operation of power plants has increased significantly in the last few years. Increased numbers of starts, operating hours and ramp rates result in accelerated lifetime consumption of the steam turbine components. Nowadays, one of the major tasks is to assess the capabilities of existing steam turbine units in terms of more flexible operation. New concepts are developed to allow improved flexible operation with associated thermal stress protection of components. New calculation methods support this approach and help to best utilize the remaining lifetime for future operation. The current lifetime status has to be established first and the remaining lifetime is then available to be utilized and distributed for future operation. The assessment of components is done by using the Finite Element Method with creep and transient calculations. Implementation of a state-of-the-art thermal stress control system allows adjustment of the stress calculator settings to the needs of the re-allocated remaining life. There are also options available to enhance flexible operation within an existing steam power plant, e.g. a reconditioning of the existing rotor with particular focus on the first blade groove or exchange an existing component for one with superior properties.
PL
W ostatnich kilku latach znacząco wzrosło zapotrzebowanie na elastyczną eksploatację elektrowni zawodowych. Zwiększona liczba rozruchów, godzin pracy oraz wyższe tempa zmian mocy skutkują przyspieszonym zużyciem elementów turbin parowych. Obecnie jednym z głównych zadań jest ocena możliwości poprawy elastyczności eksploatacji aktualnie pracujących bloków parowych. Opracowano tutaj nowe koncepcje zwiększające elastyczność pracy z jednoczesnym zabezpieczeniem elementów od naprężeń termicznych. Umożliwiły to nowe metody obliczeniowe, które jednocześnie wspomagają jak najlepsze wykorzystanie trwałości resztkowej w dalszej eksploatacji. W pierwszym kroku określa się aktualny stan żywotności a następnie dostępną żywotność resztkową rozkłada się na dalszą eksploatację. Ocena żywotności elementów wykonywana jest za pomocą metody elementów skończonych wykorzystywaną w obliczeniach pełzania i zmiennych warunków pracy. Implementacja nowoczesnego systemu kontroli naprężeń termicznych umożliwia dostosowanie jego nastaw do potrzeb realokowanej trwałości resztkowej. Dostępne są również inne opcje poprawy elastyczności istniejących bloków, np. odnowa wirnika ze szczególnym uwzględnieniem pierwszego wrębu łopatkowego lub wymiana elementu na nowy o lepszych własnościach.
PL
Aby zapewnić bezpieczeństwo funkcjonowania systemu elektroenergetycznego w Polsce i utrzymać produkcję energii ze starszych jednostek węglowych, wymagane jest opracowanie strategii dalszej pracy bloków w warunkach zwiększonej elastyczności. W artykule skupiono się na elemencie krytycznym turbiny parowej, jakim jest wirnik części wysokoprężnej. Przedstawiono metodologię pozwalającą na prognozowanie propagacji pęknięć oraz wzrostu zużycia zmęczeniowo-pełzaniowego oraz oszacowano prawdopodobieństwo wystąpienia awarii w kolejnych latach. Rozwój zidentyfikowanych zjawisk jest zależny od poziomu naprężenia podczas rozruchów, który został dobrany w taki sposób aby zapewnić bezpieczeństwo funkcjonowania turbiny w zakładanym okresie 13 lat pracy. Dla dłuższego okresu eksploatacji wynoszącego 20 lat, zaprezentowano dodatkowo metodę doboru optymalnego czasu przeprowadzenia obsługi prewencyjnej w oparciu o analizę ryzyka. Przedstawiono również algorytm pozwalający na monitorowanie poziomu naprężenia w wirniku w trybie online, uwzględniający zmienność współczynnika wnikania ciepła, który następnie może zostać przekształcany w system sterowania poziomem naprężeń w czasie rzeczywistym. Dzięki opracowanym narzędziom możliwe jest uzyskanie żądanego przyrostu naprężenia w czasie rozruchu. Przeprowadzone badania pozwalają na przedstawienie strategii dalszej eksploatacji i obsługi turbiny, która może zostać dopasowana dla konkretnego obiektu rzeczywistego.
EN
In order to ensure the safe operation of the power system in Poland and to maintain energy production from old coal-fired power plants, it is required to develop a strategy for further operation of the units in conditions of increased flexibility. The article focuses on the critical element of the turbine, which is the rotor high-pressure part. The methodology of the forecasting of crack propagation and the increase in fatigue-creep wear was presented, and the probability of failure in the following years was estimated. The development of the identified phenomena depends on the stress level during start-up, therefore it was selected in such a way as to ensure the safety of the turbine's operation during the assumed period of 13 years. For a longer service life of 20 years, the method of selecting the optimal time for preventive maintenance based on a risk analysis was additionally presented. An algorithm for online stress monitoring is also described, taking into account the variability of the heat transfer coefficient. It can be also transformed into a real-time stress level control system. Through the developed tools, it is possible to obtain the desired increase in stresses during start-up. The conducted research allows for the presentation of a strategy for further operation and maintenance of the turbine, which can be adapted to a specific real unit.
EN
This study assesses the accelerated startup of a steam turbine from the perspective of a slow closing valve. Valves are one of the first components affected by high temperature gradients and are key components on which the power, efficiency and safety of the steam system depends. The authors calibrated the valve model based on experimental data and then performed extended Thermal-FSI analyses relative to the experiment. Key results of the work include the possibility to reduce the startup time of a steam turbine while complying with stress limits and not excessively straining structural components of the valve. The single most important finding is that there is no need to change valves when accelerating the startup of steam turbines.
EN
Despite a sustainable energy future, steam turbines are requisite for the reliability and security of the electric power supply in many countries. Accurate and precise manufacturing of the steam path is crucial to turbine efficiency. Before entering the rotor blades, the steam must be correctly guided using stationary blading in a diaphragm. Steam turbine diaphragms are complicated components to manufacture, and welding is the most common fabrication method. A case study presented in this paper employs data from a 3D optical scanner for a geometric deviation analysis of the upper half of the diaphragm at two production steps, after complete welding and after final machining. Unrolled cylinder cross-sections at different diameters are used to evaluate the blade throat sizes and positions compared to the nominal geometry. The results indicate significant geometric changes between the two fabrication steps, and several suggestions are put forward for targeted future work.
EN
Steam turbine technology with enhanced flexibility will continue to participate in electric power supply mixes. Last stage blades secure the reliability of a steam turbine and require high precision manufacturing and assembly. This case study presents a statistical analysis of geometric errors of the throat sizes of the last stage blades in a mid-size steam turbine. A 3D optical scanner is employed to capture detailed geometries of rotor blades and a half of assembled nozzle diaphragm. Unrolled cylinder cross-sections are used to evaluate 2D geometrical features such as blade throats and areas at three different diameters, and the results are compared to intended designs. In addition, linear correlations between the throat size and blade pitch, area and trailing edge thickness are established, and blade throat position shifts are quantified. Such a comprehensive study is presented for the first time, and some useful conclusions can be retrieved from this case study.
EN
The production process of steam turbine steering disks requires many welded joints of high quality parameters. The article presents the test results obtained in the welding process of elements made of martensitic steel X11CrMo12-1 with a thickness of 160 mm. During the tested process, a weld was made with a welding wire filling with 1% and 9% chromium in the K geometry, a groove height of 65 mm and without full penetration. The research was carried out on a butt joint in a downward position. The joint was subjected to destructive and non-destructive tests, including macroscopic tests. This work was aimed at determining the optimal welding parameters, influencing the improvement of the properties and quality of the joint..
PL
Proces wytwarzania tarcz kierowniczych turbin parowych wymaga wykonania wielu połączeń spawanych o wysokich parametrach jakościowych. W artykule przedstawiono wyniki badań otrzymane w procesie spawania elementów wykonanych ze stali martenzytycznej X11CrMo12-1 o grubości 160 mm. W trakcie badanego procesu wykonano spoinę z wypełnieniem drutem spawalniczym o zawartości 1% i 9% chromu w geometrii K, wysokości rowka 65 mm i bez pełnego przetopu. Badania zostały przeprowadzone na połączeniu doczołowych w pozycji podolnej. Złącze poddano badaniom niszczącym i nieniszczącym, w tym badaniom makroskopowym. Praca miała na celu określenie optymalnych parametrów spawania, wpływających na podniesienie właściwości i jakości wykonanego złącza.
EN
In this work, cast steel G17CrMoV5-10 was investigated. The material subject to investigation as part of this study is commonly used to manufacture steam turbine casings. Modern steam turbines operate under elevated temperature and complex oscillated loads. Thus, the focus of this study was to investigate material under behavior during low cycle fatigue (LCF) test performance at 500°C with and without hold time in tension. During all types of test, cyclic softening of cast steel was noticed. Increasing of total strain rate and applying hold time significantly reduce fatigue life. During hold time, due to temperature and tension the material creep what is confirmed by increasing inelastic stain accommodation.
EN
Flexible operation of coal-fired power plants contributes to the intensification of the life consumption processes, which is a serious problem especially in the case of units with a long in-service time. In steam turbine rotors, the crack propagation rate and material wear caused by low-cycle fatigue increase. The aim of the research is an attempt to forecast the development of these processes and to estimate the probability of critical elements damage, such as the high-pressure and intermediate-pressure rotors. In the stress state analyses, the finite element method (FEM) is used, the Monte Carlo method and the second order reliability method (SORM) is apply to calculate the probability of failure. It is proposed to use risk analysis to plan preventive maintenance of the turbine. The optimal intervals for carrying out diagnostic tests and prophylactic repairs is determined for various operating scenarios and various failure scenarios. This enables a reduction of the costs while ensuring the safety of the turbine's operation.
PL
W artykule omówiono współcześnie obowiązujące zasady poprawności instalacji czujników umożliwiających realizację jakościowo możliwie najlepszych pomiarów dla sygnałów pozyskiwanych z tych czujników. W przypadku licznych turbozespołów pracujących w kraju (łącznie z tymi najnowszymi) opisane w artykule zasady są mniej lub bardziej naruszone.
13
EN
Problems related to power control of low power-output steam turbines are analyzed. These turbines are designed to operate in distributed power generation systems. Principles of automatic control involving a single control valve are presented on the basis of experience gathered with high power-output turbines. Results of simulations of power control for a low power-output turbine are discussed. It has been proven that closing of the control system and an application of a power controller (of optimally selected parameters) improves the object dynamics (shortening of the transition period). At the same time, a lack of such optimization can results in occurrence of undesirable phenomena such as: overshoot in the generator power characteristics, elongation of the response time to disturbance or overshoot of turbine control valves.
EN
Paper is considering the purpose and the process of development of last stage blade for intermediate pressure module of 13K215 steam turbine. In the last 20–30 years most of the steam turbine manufacturers were focused on improving such a turbine mainly by upgrading low pressure module. In a result of such a modernization technology were changed from impulse to reaction. The best results of upgrading were given by developing low pressure last stage blade. With some uncertainty and based on state of art knowledge, it can be stand that improving of this part of steam turbine is close to the end. These above indicators show an element on which future research should be focused on – in the next step it should be intermediate pressure module. In the primary design the height of intermediate pressure last stage blade was 500 mm but because of change of technology this value was decreased to 400 mm. When to focus on reaction technology, the height of the last stage blade is related to output power and efficiency. Considered here is the checking the possibility of implementing blades, in a reaction technology, higher than 400 mm and potentially highest. Article shows a whole chosen methodology of topic described above. It leads through the reasons of research, limitations of 13K215 steam turbine, creation of three-dimensional models, fluid flow calculations, mechanical integrity calculations and proposed solutions of design.
EN
The results of the gas-dynamic calculation of the low-pressure cylinder flow part of the K-220-44 type steam turbine intended for operation at nuclear power plants are presented. The ways of the flow part improvement were determined. Some of those ways include the use of innovative approaches that were not previously used in steam turbines. The design of the new flow part was carried out on the basis of a comprehensive methodology implemented in the IPMFlow software package. The methodology includes gas-dynamic calculations of various levels of complexity, as well as methods for analytical construction of the spatial shape of the blade tracts based on a limited number of parameterized values. The real thermodynamic properties of water and steam were taken into account in 3D calculations of turbulent flows. At the final step, end-to-end 3D calculations of the lowpressure cylinder that consists of 5 stages were performed. The technology of parallel computing was applied in those calculations. It is shown that due to the application of innovative solutions, a significant increase in efficiency can be achieved in the developed low-pressure cylinder.
EN
The one of purposes of this paper is to estimation some impact on the service life of the high-pressure cylinder rotor of a typical high-speed turbine K-1000-60/3000. The residual life assessment of power equipment would require determining viability and damage of its base metal. Typical degradation mechanisms of steam turbine equipment include long-term strength reduction and low cycle fatigue accumulation. Intensity of their impact is determined by a numerical examination of equipment thermal (TS) and stress strain states (SSS) for standard operation modes. To perform a numerical examination of the stress strain state would require solving a thermal conductivity boundary problem in quasi-stationary (for nomal operation modes) and nonstationary models (for transients). It is convenient to solve such problems of mathematical physics through discretization of the calculation object using the finite element method (Chernousenko et al. 2018). The service life of steam turbine is determined as an individual one and is assigned based on the results of individual an inspection of a separate element or the largest group of single-type equipment elements of the considered plant. The fleet service life being reached is followed by diagnostics of specific units of power installations and analysis of their operation, measurement of actual dimensions of components, examination of structure, properties and damage accumulation in the metal, non-destructive testing and estimate of stress strain state and residual service life of the component. The results of performed studies are used to determine an individual service life of each element of energy equipment (Nikulenkov et al. 2018).
EN
A thermal diagram of the combined gas‒steam turbine unit of a hybrid cycle, which is an energy complex consisting of a base gas turbine engine with a steam turbine heat recovery circuit and a steam-injected gas turbine operating with overexpansion, is proposed. A mathematical model of a power plant has been developed, taking into consideration the features of thermodynamic processes of simple, binary, and steam-injected gas‒steam cycles. Thermodynamic investigations and optimization of the parameters of a combined installation of a hybrid cycle for the generation of electrical energy have been carried out. Three-dimensional calculations of the combustion chamber of a steam-injected gas turbine were carried out, which confirmed the low emissions of the main toxic components.
EN
So far, certain approaches have been developed to extension of service life of equipment in the different stages of metal physical exhaustion. The possibility of defining operating conditions of plant equipment beyond the fleet service life becomes even more relevant with increased operating time. The service life is determined as an individual one and is assigned based on the results of individual an inspection of a separate element or the largest group of single-type equipment elements of the considered plant. The fleet service life being reached is followed by diagnostics of specific units of power installations and analysis of their operation, measurement of actual dimensions of components, examination of structure, properties and damage accumulation in the metal, non-destructive testing and estimate of stress strain state and residual service life of the component. The results of performed studies are used to determine an individual service life of each element of energy equipment.
EN
This paper aims to validate the performance capabilities of a Pressure Reducing Turbine (PRT) with respect to initial predictions based on analytic calculations. The designed equipment was installed in a beverage facility, located in Brazil. The validation procedure consists of analyzing the data collected in several periods of PRT’s operation, accessed remotely via an online server. The analysis of empirical data identifies the behavior of two key variables: generated power and effective efficiency. However, the observed boundary conditions differed significantly from expected values, forcing the turbine to operate in off-design conditions. The turbine model was hence refined and used to predict the PRT’s performance in such conditions. Results showed satisfactory accuracy for both power and efficiency predictions.
20
Content available Wet steam flow in 1100 MW turbine
EN
The paper deals with the wet steam flow in a steam turbine operating in a nuclear power plant. Using a pneumatic and an optical probe, the static pressure, steam velocity, steam wetness and the fine water droplets diameter spectra were measured before and beyond the last turbine low-pressure stage. The results of the experiment serve to understand better the wet steam flow and map its liquid phase in this area. The wet steam data is also used to modify the condensation model used in computational fluid dynamics simulations. The condensation model, i.e. the nucleation rate and the growth rate of the droplets, is adjusted so that results of the numerical simulations are in a good agreement with the experimental results. A 3D computational fluid dynamics simulations was performed for the low-pressure part of the turbine considering non-equilibrium steam condensation. In the post-processing of the of the numerical calculation result, the thermodynamic wetness loss was evaluated and analysed. Loss analysis was performed for the turbine outputs of 600, 800, and 1100 MW, respectively.
first rewind previous Strona / 11 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.