Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spiekanie impulsowo-plazmowe (PPS)
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Węgliki spiekane są jednym z najczęściej stosowanych materiałów narzędziowych. Charakteryzują się wysoką twardością oraz dobrymi właściwościami skrawającymi. Tradycyjnie węgliki wytwarza się w piecach z nagrzewaniem indukcyjnym lub oporowym w procesach trwających kilkanaście godzin. Metoda ta jest czaso- i energochłonna. Dlatego nieustannie trwają badania nad nowoczesnymi i ulepszonymi metodami spiekania. Jedną z nich jest metoda spiekania impulsowo plazmowego SPS (ang. spark plasma sintering). Umożliwia ona szybkie otrzymywanie litych materiałów, charakteryzujących się dobrymi właściwościami mechanicznymi. W pracy pokazano wpływ wielkości ziarna WC na podstawowe właściwości spieków, takie jak twardość, gęstość i mikrostruktura, wykonanych metodą impulsowo-plazmowego spiekania. Do przeprowadzenia procesów spiekania wykorzystano mieszankę proszków węglika wolframu z kobaltem o gradacji ziaren (cząstek pierwotnych) WC < 1 μm i 400 nm, oznaczonej przez producenta.
EN
Cemented carbides are one of the most commonly used tool materials. They are characterized by high hardness and good cutting properties. Traditionally, carbides are produced in furnaces with induction or resistance heating in processes lasting several hours. This method is time and energy consuming. That is why research is constantly ongoing on modern and improved sintering methods. One of them is the SPS (spark plasma sintering) method. It allows us to quickly obtain solid materials with good mechanical properties. The paper presents the influence of WC grain size on the basic sintered properties, such as hardness, density and microstructure, made by pulse-plasma sintering. A mixture of tungsten carbide and cobalt powders with a gradation of WC grains (primary particles) <1 μm and 400 nm, determined by the manufacturer, was used for sintering processes.
EN
The paper presents the results of studies on the influence of the addition of TaC–NbC on WC–5Co cemented carbides produced by pulse plasma sintering, and their effect on the hardness of cutting inserts and durability of cutting edges made from WC–5Co and WC–5Co–xTaC–NbC (x = 0.5, 2.5, 4.5) cemented carbides. The Vickers hardness was measured according to the PN–EN 23878:1996 standard and the durability was measured during machining using a conventional lathe where the shaft (counter-specimen) was made from 1.4541 stainless steel. The obtained results clearly show the positive effect of the addition of TaC–NbC on the hardness of cutting inserts and durability of cutting edges. The hardness increased by 5% for the WC–5Co–2.5TaC–NbC insert in comparison to pure the WC–5Co insert. The durability of the cutting edges also increased by 20% for the WC–5Co–2.5TaC–NbC insert.
PL
Węgliki spiekane są powszechnie stosowane do produkcji ostrzy skrawających oraz różnych elementów części maszyn. Jak wiadomo, podczas spiekania ziarna węglika wolframu (WC) ulegają rozrostowi, co jest zjawiskiem niepożądanym. W przypadku węglików spiekanych rozrost ziaren WC można skutecznie ograniczyć przez wprowadzenie do mikrostruktury m.in. węglika chromu (Cr3C2), węglika tantalu (TaC), węglika niobu (NbC), węglika wanadu (VC) czy węglika tytanu (TiC). Węgliki te pełnią funkcję inhibitorów wzrostu ziaren WC. Ponadto zastosowanie zaawansowanych metod metalurgii proszków, do których zalicza się metodę spiekania impulsowo- plazmowego (PPS), także przyczynia się do ograniczenia rozrostu ziaren m.in. ze względu na niższą temperaturę i krótszy czas spiekania. Metoda PPS należy do nowoczesnych metod spiekania wspomaganego polem elektrycznym (FAST). W ramach prezentowanej pracy dokonano analizy wpływu dodatku TaC–NbC w ilości 0,5; 2,5 i 4,5% mas., na twardość płytek oraz trwałość ostrzy skrawających z węglików spiekanych WC–5Co wytworzonych za pomocą metody PPS.
PL
Wytwarzanie cienkich warstw funkcjonalnych metodą magnetronową wymaga stosowania specyficznych materiałów źródłowych, tzw. targetów. W artykule przedstawiono wyniki pracy nad technologią wytwarzania targetów W-Re, Mo-Re oraz TiO2 z wolframem, neodymem i hafnem, stosując nowoczesną techniką metalurgii proszków, jaką jest spiekanie impulsowo plazmowe (SPS). Zastosowana metoda pozwoliła na uzyskanie targetów o wysokiej gęstości i małej porowatości. Testy wytwarzania cienkich warstw metodą magnetronową z zastosowaniem otrzymanych targetów potwierdziły, że mogą być one stosowane do rozpylania magnetronowego.
EN
In order to fabricate thin functional films by a magneton method it is necessary to use specific starting materials, which are called targets. This paper presents results of a research work on fabrication of the W-Re, Mo-Re and TiO2 targets with tungsten, neodymium and hafnium, using a modern powder metallurgy technique — spark plasma sintering (SPS). The targets obtained by this method were of high density and low porosity. They were used during the tests with fabrication of thin films by a magnetron method confirming that they are suitable for magnetron sputtering.
PL
Obecnie trwają prace nad zastąpieniem osnowy z drogiego i rakotwórczego kobaltu w kompozytach metal–diament materiałem na bazie faz międzymetalicznych z układu Ni–Al. W pracy przedstawiono wpływ wielkości cząstek diamentu na właściwości kompozytów Ni3Al–diament otrzymanych metodą impulsowo- plazmową (PPS) z udziałem reakcji SHS (Self-propagating Hight-temperature Synthesis). Do mieszaniny proszków Ni:Al w proporcji 3:1 dodano 30% obj. proszku diamentu o rozmiarze cząstek 16÷20 oraz 40÷60 μm. Następnie próbki spiekano w temperaturze 900°C przez 5 minut pod ciśnieniem prasowania 100 MPa. Otrzymane spieki wykazują gęstość względną powyżej 98% i charakteryzują się drobnokrystaliczną strukturą z równomiernie rozmieszczonymi cząstkami diamentu, co potwierdzają obserwacje powierzchni zgładów i przełomów za pomocą skaningowego mikroskopu elektronowego. Charakter przełomów jest kruchy, a mechanizm pękania międzykrystaliczny. Kompozyty Ni3Al–diament poddano także badaniu rentgenowskiej analizy fazowej, która poza fazą Ni3Al i diamentem wykazała obecność fazy Ni3C, bez względu na wielkość zastosowanego diamentu. Twardość Vickersa wynosiła 578±9 HV5 dla spieku Ni3Al–diament 16÷20 μm oraz 606±2 HV5 dla spieku Ni3Al–diament 40÷60 μm. Spieki Ni3Al–diament poddano badaniom odporności na zużycie przez tarcie metodą kula–tarcza. Zużycie kompozytów diamentowych jest znikome i praktycznie niemierzalne. Spiek z diamentem o cząstkach 40÷60 μm charakteryzował się mniejszym współczynnikiem tarcia niż spiek Ni3Al–diament 16÷20 μm. Podsumowując, wielkość cząstek diamentu zastosowanego w kompozytach Ni3Al–diament nie wpływa na mikrostrukturę. Zauważalnie zwiększają się właściwości mechaniczne (twardość, odporność na ścieranie) z zastosowaniem diamentu o większych cząstkach 40÷60 μm.
EN
There is an increasing number of research studies with aim to eliminate carcinogenic and expensive cobalt from metal–diamond composites and replace it by Ni–Al intermetallic phases. This study presents the influence of diamond particle size on the properties of Ni3Al–diamond composites sintered by Pulsed Plasma Sintering (PPS) with the participation of SHS reaction (Self-propagating High-temperature Synthesis). Ni3Al–diamond sinters were produced using Ni:Al (3:1 at.) powder mixtures with addition of 30% vol. of diamond with grain size ranging from 16 to 60 μm. The sintering process was performed at 900°C in 5 minutes under load 100 MPa. Obtained sinters have above 98% theoretical density and shows fine crystalline microstructure with relatively uniformed diamond particles, what can be observed on SEM images of polished surface and fracture. The fractures are brittle and have the intergranular character. The X-ray phase examinations have shown that each sinters contains Ni3Al, diamond and Ni3C. Hardness of the sinters was tested by the Vickers method and was 578±9 HV5 for Ni3Al–diamond 16÷20 μm sinter and 606±2 HV5 for Ni3Al–diamond 40÷60 μm. Wear resistance of Ni3Al–diamond sinters, tested by ball-on-disc method, showed that wear ratio is non-measurable and Ni3Al–diamond 40÷60 μm sinter has much lower friction factor than Ni3Al–diamond 16÷20 μm. Presented research has shown no influence of diamond particle size used in Ni3Al–diamond sinters on structural properties, however an increase of mechanical properties in composite with diamond 40÷60 μm can be noticed.
PL
Prezentowane wyniki obejmują badania strukturalne, pomiary twardości i mikrotwardości oraz badania wytrzymałości na ściskanie kompozytu AK52/SiC otrzymanego metodami metalurgii proszków. Materiał wyjściowy wytworzono z wiór stopu AK52 (AlSi5Cu2) z dodatkiem węglika krzemu (SiC) w procesie mechanicznej syntezy. Uzyskano drobnoziarnisty proszek o jednorodnym rozmieszczeniu twardych cząstek ceramicznych w osnowie aluminium. Proces konsolidacji przeprowadzono metodą impulsowo-plazmowego spiekania, co w krótkim czasie pozwoliło otrzymać wypraski o dobrych właściwościach mechanicznych i jednorodnej strukturze. Dodatek twardych cząstek SiC powoduje wzrost twardości i wytrzymałości wytworzonych próbek. Analiza strukturalna potwierdziła jednorodną strukturę i drobnoziarnistość otrzymanych wyprasek.
EN
The paper presents investigations on possibility of using powder metallurgy processing for producing a composite structure, obtained by introducing SiC into recycled aluminium alloy by means of spark plasma sintering. The mixtures of SiC (0 and 20 wt% ) particles and AK52 (AlSi5Cu2) aluminum alloy chips were subjected to mechanical alloying throughout 40 hours. This lead to homogenous composite powder with particle size of about 3 mm, granular shape and uniform distribution of reinforcement particles into aluminum matrix. Higher amount of silicon carbide and longer time of processing allow to obtain a final overall microhardness of about 500 HV0.025. This is basically due to the strain hardening effect during MA and to the achievement of an homogeneous distribution of reinforcement in the composite powder. The prepared and identified powder mixtures (AK52+ (0 and 20 wt%) SiC) were finally densified by the spark plasma sintering method. The powders were embedded into the matrix with graphite cover and sintered at 450 [degrees]C, under 32 MPa by 5 min. The porosity investigations show that the AK52+20SiC consolidated compact was fully densified under these consolidation conditions while powders without addition of SiC has higher porosity results. The microstructure of compacted powders was examined by scanning electron microscopy (SEM) and light optical microscopy and reveals uniform structure of sintered composite powder. The Vickers hardness (HV5) tests increases with the addition of SiC particles. Hardness is a property related to the material resistance against plastic deformation which was confirmed by compression test. Content of SiC addition allows to increase stress but ductility of composite samples is still very low. Spark plasma sintering process is an effective consolidation method to obtain dense AK52/SiC composites with homogeneous structure and advanced mechanical properties.
6
Content available remote Właściwości kompozytu WCCo spiekanego metodą PPS
PL
Węglik wolframu charakteryzuje się wysoką temperaturą topnienia, dużą twardością, dobrym przewodnictwem cieplnym i elektrycznym oraz stabilnością chemiczną w podwyższonych temperaturach. Duża twardość węglika oraz związana z nią wysoka odporność na zużycie ścierne predysponują go do wykorzystania jako doskonały materiał na narzędzia skrawające. Niestety istotną wadą jednofazowych narzędzi z węglika wolframu jest ich duża kruchość, którą można ograniczyć poprzez zastosowanie metalicznej osnowy. Najbardziej rozpowszechnionym materiałem wykorzystywanym jako osnowa, już od 1927 roku, jest kobalt. Kompozyty WC z domieszką kobaltu są cenionym materiałem konstrukcyjnym i narzędziowym oraz dzięki swym właściwościom narzędzia wykonane z kompozytów WCCo stanowią ponad 50% ogółu narzędzi skrawających. Spiekanie węglika wolframu prowadzi się swobodnie w zależności od zawartości kobaltu w temperaturze 1400-1500°C. Łączny czas samego spiekania, bez uwzględnienia procesów rozdrabniania i mieszania, wynosi kilkanaście godzin. Nowoczesną metodą pozwalającą przeprowadzić proces spiekania w niższej temperaturze i w znacznie krótszym czasie, ok. 10 min, jest metoda impulsowo-plazmowego spiekania PPS (Pulse Plasma Sintering), opracowana na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej. Istota tego procesu polega na wykorzystaniu impulsów elektrycznych do nagrzewania sprasowanego proszku. Nagrzewanie proszku impulsami prądu następuje w wyniku wydzielania się ciepła Joule'a w miejscach kontaktu cząstek spiekanego proszku. Impulsy otrzymywane są w wyniku rozładowania baterii kondensatorów o pojemności 300 žF. W pracy przedstawiono wyniki badań mikrostruktury i właściwości kompozytów WCCo o zawartości 6% wag. kobaltu, spiekanych metodą PPS. Zastosowana metoda pozwoliła w krótkim czasie, ok. 10 min, uzyskać spieki o gęstości zbliżonej do gęstości teoretycznej i twardości na poziomie 1930 š 30 HV30. Średni rozmiar ziaren WC w kompozycie zawierającym 6% wag. kobaltu wynosi 0,42 žm, a największy udział ziaren występuje w zakresie 0,4-0,6 žm.
EN
Tungsten carbide is known for its high-temperature melting point, high hardness, good thermal and electrical conductivity and chemical stability at high temperature. The high hardness of the carbide and the associated high wear resistance predispose it as a perfect material for the manufacture of cutting tools. However, the tools made of solid tungsten carbide simultaneously reveal high brittleness. It can be reduced by the addition of metallic phase distributed among WC grains. Since 1927, cobalt is successfully applied as an addition to the WC matrix. Because of their properties, WCCo composites are valued cutting tool materials. Nowadays over 50% of manufacturing cutting tools are made of WCCo composites. Sintering of tungsten carbide is carried out with no external pressure applied at 1400 °C to 1500 °C, depending on the content of cobalt. Total time of the sintering process, without taking into account the processes of grinding and mixing, is several hours. The modern method which enables to carry out the process of sintering at lower temperatures and at significant shorter times (about 10 minutes) is the Pulse Plasma Sintering method (PPS), elaborated and developed at the Faculty of Materials Science and Engineering at the Warsaw University of Technology. The essence of this process involves the use of electric pulse to heat the compressed powder. Heating the powder with current pulses is due to release of Joule's heat in the places of contact of sintered powder. The pulses are obtained as a result of battery of capacitors battery with a capacity of 300 žF. The paper presents the results of examinations of the microstructure and properties of WC-Co composites with 6 wt.% content of cobalt, produced by Pulse Plasma Sintering technique. The method enabled to obtain sinters showing density close to the theoretical one and hardness of 1930 š 30 HV30 in a short time (approx. 10 minutes). The average grain size of WC in the sintered composite containing 6 wt.% Co is 0.42 microns and the largest share of grains occurs in the range of 0.4-0.6 microns.
PL
Artykuł dotyczy spiekania proszków metodą Impulsowo-Plazmową (PPS) opracowaną na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej. W metodzie PPS, w odróżnieniu od znanych metod spiekania wykorzystujących impulsowe źródła energii dla nagrzewania spiekanego materiału, wykorzystuje się silnoprądowe impulsy otrzymywane z rozładowania baterii kondensatorów. Zastosowanie kondensatorów jako źródła energii elektrycznej umożliwia otrzymanie periodycznie powtarzanych impulsów prądu o czasie trwania kilkuset mikrosekund i natężeniu setek kiloamper. W pierwszej części pracy omówiono metodę PPS oraz mechanizm spiekania silno- prądowymi impulsami. W drugiej podano przykłady zastosowania metody PPS do spiekania: nanokrystalicznych materiałów, kompozytów metaliczno- -ceramicznych, takich jak WC/diament, miedź/diament oraz reaktywnego spiekania trudnotopliwych ceramik z proszków elementarnych.
EN
The paper concerns producing sintered materials by Pulse Plasma Sintering method (PPS), developed at the Faculty of Materials Science and Engineer- ing, Warsaw University of Technology. Unlike other electric-pulses applied sintering methods, the PPS method employs pulse high-current electric dis- charges generated by discharging a battery of capacitors. The use of capaci- tors as the source of energy permits generating periodic current pulses, with a duration of several hundred microseconds with intensity of hundred kA. The PPS technique and sintering mechanism are discussed in the first part of article. In further part of a paper are described applications of the PPS method in the field of nanomaterials, metal/ceramic composites - WC/dia- mond, Cu/diamond and reactive sintering processes with the participation of the elementary powders.
8
Content available remote Kompozyty Cu/diament wytwarzane metodą impulsowo-plazmowego spiekania
PL
Przedmiotem pracy jest wytworzenie kompozytu Cu/diament o udziale objętościowym cząstek diamentu 50% w warunkach jego nietrwałości termodynamicznej. Do konsolidacji kompozytów stosowano metodę impulsowo-plazmowego spiekania (Pulse Plasma Sintering - PPS). Kompozyty spiekano w temperaturze 900°C w czasie od 5 do 30 min pod ciśnieniem 60 MPa. Prowadzono badania gęstości, składu fazowego i mikrostruktury wytworzonych kompozytów. Uzyskano kompozyty o gęstości względnej 98%. Nie stwierdzono obecności grafitu w spiekach. Mikrostrukturę kompozytu charakteryzuje równomierne rozłożenie cząstek diamentu w osnowie miedzi. Wprowadzenie Cr o objętości względnej 0,8 powoduje, że diament ma silne wiązanie z osnową (Cu). Zwiększenie wytrzymałości połączeń cząstek diamentu z osnową zapewnia warstwa przejściowa węglika chromu.
EN
The rapidly advancing miniaturization of micro-electronic devices leads to a considerable increase of the amount of heat evolved by electronic circuits. It is anticipated that, in the current decade, it will reach the limiting value possible to dissipate by the materials used at the present. In order to enable the packing density of micro-electronic devices to be further increased, we need new materials of higher thermal conductivity but with a comparable value of the thermal expansion coefficient. Another requirement is that these materials should have a thermal expansion coefficient comparable with that of the microelectronic substrate material so as to avoid damage to the heat sink/substrate joint due to the thermal stresses induced by cyclic temperature variation. These requirements can be satisfied by diamond/metal composites with the metal matrix of high thermal conductivity, such as e.g. Cu. The thermal properties (conductivity, thermal expansion) of the composites can easily be modified by modifying the metal/diamond proportion. However, within the temperature range of consolidation of these composites, diamond is a metastable phase and may, during the consolidation, be transformed into its stable phase i.e. graphite. This can be avoided by conducting the process under conditions of thermodynamic stability of diamond, i.e. by applying appropriately high consolidation pressure (4-5 GPa), which however increases the production costs. The authors of the present study experimented with producing copper/diamond composites with 50 vol. % of diamond particles under conditions of thermo-dynamic instability of diamond by consolidating the composite using the pulse Plasma Sintering (PPS) method. The process temperature was 900°C, the pressure was 60 MPa and the process lasted for 5 to 30 min. The phase composition, density and microstructure of the composites thus obtained were examined. The PPS-consolidated composites had a relative density of 98% and the diamond particles were distributed uniformly within the copper matrix. No graphite was found at the Cu/diamond interface (the composite consolidated at a temperature of 900°C for 30 min). Improvements in properties of the composites were achieved using copper alloy with chromium to increase the interfacial bonding in Cu/diamond composites. The Cu0.8Cr/diamond composite was characterized by a strong bond between the diamond and the copper matrix which was due to the chromium carbide transition layer formed there.
PL
W pracy otrzymymano spieki NiAl-0,2% at. Hf o twardości 330 HV1 i gęstości ok. 95% gęstości teoretycznej. Spieki konsolidowano metodą impulsowo-plazmowego spiekania PPS (Pulse Plasma Sintering) z udziałem reakcji SHS (Self-Propagating High-Temperature Synthesis) z mieszaniny proszków: Ni, Al i Hf w czasie 25 min w temperaturze 900°C przy nacisku 50 MPa. Na podstawie przeprowadzonych badań strukturalnych, składu fazowego i chemicznego spieków w różnych stadiach procesu syntezy stwierdzono, że reakcja syntezy fazy NiAl przebiega w dwóch etapach. W pierwszym etapie w reakcji między niklem a aluminium po kilku wyładowaniach impulsowych inicjowana jest reakcja, w której powstają fazy NiAl3 i Ni2Al3 i NiAl. Następnie w temperaturze ok. 530°C z fazy NiAl3 i Ni2Al3 w reakcji egzotermicznej powstaje faza NiAl.
EN
NiAl-0.2 at. % Hf sinters were produced by the Pulse Plasma Sintering (PPS) method with the participation of the SHS (Self-Propagating High-Temperature Synthesis) reaction. The NiAl-0.2 at. % Hf sinters were consolidated of a mixture of the Ni, Al and Hf powders at temperature 900°C under a load of 50 MPa during 25 min. The sintered materials have a relative density of 95% and hardness of 330 HV1. Structural examinations and examinations of the phase and chemical composition of the sintered materials have revealed that the reaction of the NiAl synthesis proceeds in two stages. During the first stage nickel reacted with aluminum and formed NiAl3, Ni2Al3 and NiAl phases. This reaction is initiated by several pulse discharges. Then NiAl3 and Ni2Al3 phases are changed into NiAl phase by an exothermic reaction at a temperature of about 530°C.
PL
Metodą impulsowo-plazmowego spiekania (rys. 1) konsolidowano nanokrystaliczne proszki NiAl-TiC. Proszki otrzymywano w procesie mechanicznej syntezy z pierwiastków Ni, Al, Ti, C, oraz z gotowych proszków NiAl i TiC rozdrabnianych przez mielenie w młynku Frittsch. Określono optymalne parametry dla impulsowo-plazmowego spiekania (temperatura 1273 K, nacisk 30 MPa, czas spiekania 600 ÷ 1500 s). Parametry procesu spiekania zamieszczono w tabeli 1. Dla otrzymywanych spieków NiAl-TiC przeprowadzono obserwacje mikrostruktury oraz badania składu fazowego, twardości i gęstości. Rysunek 5 przedstawia zapisy dyfrakcyjne dla proszku po rozdrabnianiu i po spiekaniu w czasie 1000 s. W pierwszym okresie spiekania (200 s) następuje rozrost krystalitów (rys. 6). Wielkość krystalitów NiAl wzrasta z 10 nm do ok. 50 nm i odpowiednio TiC z 20 nm do ok. 45 nm. Dalsze wydłużenie czasu spiekania do 1500 s nie powoduje rozrostu krystalitów, a wpływa tylko na wzrost gęstości i twardości spiekanego proszku (rys. 7). Badania składu fazowego proszków otrzymanych w procesie mechanicznej syntezy przed spiekaniem oraz po spiekaniu impulsowo--plazmowym nie wykazały zmian w ich składzie fazowym (rys. 8). Badania wielkości krystalitów proszku wyjściowego oraz spieku wykazały nieznaczny rozrost krystalitów NiAl z 15 nm do 45 nm i odpowiednio TiC z 50 nm do 65 nm po czasie spiekania 600 s. Nanokrystaliczną budowę kompozytu potwierdziły obserwacje mikrostruktury przy użyciu TEM (rys. 9). Uzyskane spieki NiAl-TiC mają gęstość 4,5 g/cm2, co stanowi ok. 99 % gęstości teoretycznej i twardość ok.1035 HV1.
EN
The impulse plasma sintering method (Fig. 1) was used for the consolidation of nanocrystalline NiAl-TiC powders. The starting powders were produced by the mechanical synthesis of Ni, Al, Ti and C, and also by milling the commercial NiAl and TiC powders in a Frittsch mill. The parameters of the impulse-plasma sintering process are given in Table 1. The optimum parameters of this process have been found to be: temperature - 1273 K, pressure - 30 MPa, and sintering time - 600 ÷ 1500 s. The microstructure, phase composition, hardness and density of the NiAl-TiC sinters thus obtained were examined. Fig. 5 shows the diffraction records obtained for the powder subjected to milling and sintering for 1000 s. In the first stage of sintering (200 s), the powder crystallites grow up (Fig. 6): in NaAl - they grow from 10 nm to about 50 nm and in TiC - from 20 nm to about 45 nm. The prolongation of the sintering time to 1500 s does not result in a further growth of the crystallites, but only increases the density and the hardness of the material being sintered (Fig. 7). Examinations of the phase composition of the mechanically synthesized powders before and after the impulse-plasma sintering show no alterations in their phase compositions (Fig. 8). After sintering for 600 s, the crystallite sizes slightly increased compared to those in the starting powder: in NiAl from 15 nm to 45 nm and in TiC from 50 nm to 65 nm. TEM observations confirmed that the composite has a nanocrystalline structure (Fig. 9). The density of the NiAl-TiC sinters was 4.5 g/cm2 (which is about 99 % of the theoretical density), and their hardness was about 1035 HV1.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.