Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 383

Liczba wyników na stronie
first rewind previous Strona / 20 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sorption
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 20 next fast forward last
PL
Współcześnie stosowane tynki maszynowe produkowane na bazie gliny zawierają znaczną ilość dodatków i wypełniaczy, które mają zapewnić możliwość ich aplikacji przy użyciu typowych agregatów tynkarskich. Wypełniacze te redukują zawartość gliny jako podstawowego składnika wpływającego na poprawę klimatu wewnętrznego w pomieszczeniach. W artykule przedstawiono wyniki badań porównawczych parametrów sorpcyjnych różnych receptur tynków o dużej zawartości gliny na tle wyników badań innych tynków powszechnie stosowanych w budownictwie. Na podstawie przeprowadzonej selekcji dobrano tynk o bardzo dobrych właściwościach sorpcyjnych i zweryfikowano możliwość jego aplikacji techniką torkretowania, wykorzystującą właściwości tiksotropowe użytego materiału.
EN
Modern ready mixed clay-based plasters contain a substantial amount of additives and fillers that are indispensable to make typical machine-assisted plaster application feasible. Fillers reduce the content of clay as the primary ingredient improving the indoor climate in rooms. This article presents the results of comparative studies on the sorption parameters of various clay-rich plaster compositions against the backdrop of research results for other plasters commonly used in building engineering. A plaster characterized by high sorption properties was selected and verified in terms of application potential using the shotcreting technique taking advantage of the thixotropic properties of the material. The developed composition was applied as plaster in a residential building where its effectiveness and influence on the indoor comfort in rooms were verified.
EN
Plastic pollution is and will be a problem for humanity to deal with for decades to come. The main cause for concern is plastic debris of microsizes, that has been detected in many worrying locations, e.g. human body. Microplastic can carry many substances. It’s possible for many substances, including toxins, to accumulate on plastic surface. This review pertains to the compilation of the newest scientific information regarding plastic’s ability to sorption. The methodological approach as well as mathematical models used in studies pertaining to this topic have been demonstrated. The type of plastic, the matrix and state of microplastic sample have been described to be affecting sorption on plastic. Some problems with methodology in compiled sorption studies have been outlined. It was concluded that more research is needed to be done to fully grasp this topic.
EN
There have been investigated potential evaluation of equilibrium adsorption isotherm for the removal of nitrates from water solutions using two types of char produced in commercial-scale pyrolysis based on recycled waste rubber tires. Liquid phase adsorption studies were performed under batch conditions and maximum adsorption capacity was determined. Equilibrium data were mathematically modelled using two-parameters Langmuir, Freundlich, three-parameters Redlich-Peterson, Toth, Dubinin-Radushkevich, Radke-Praushnitz, combined Langmuir-Freundlich and four-parameters Fritz-Schlunder, Marczewski-Jaroniec, Bi-Langmuir adsorption models. Obtained results revealed the potential use of the studied char adsorbents for nitrates removal from aqueous media (the maximum adsorption capacity at equilibrium 10.07 mg/g, have been achieved for CH-1 char). The Langmuir-Freundlich isotherm had the best fit for the adsorption experimental data over the whole concentration range. The highest percentage of NO3 removal efficiency onto CH-2 char achieved in NO3 initial concentration range from 26.44 to 66.55mg/L reaching values in the range of from 80.74 to 78.7%.
EN
This work presents the synthesis of polymer resins with heterocyclic functional groups, that is, N-(3-aminopropyl)-2-pipecoline, N-(3-aminopropyl)-2-pyrrolidinone, and trans-1,4-diaminocyclohexane for the recovery of Ag(I) from chloride solutions. The modification yield was 69.2, 74.6 and 88.3%, respectively. The best Ag(I) sorption was achieved from synthetic and real chloride solutions in the case of trans-1,4-diaminocyclohexane resin (sorption was 26.8 and 21.5 mg/g, respectively). The sorption kinetic data were well fitted to the pseudo-first-order kinetic model. The maximum sorption capacity of Ag(I) is 105.4, 117.8 and 130.7 mg Ag(I)/g for N-(3-aminopropyl)-2-pipecoline resin, N-(3-aminopropyl)-2-pyrrolidinone resin and trans-1,4-diaminocyclohexane resin, respectively. The trans-1,4-diaminocyclohexane modified resin was very selective towards Ag(I) compared to Cu(II), Pb(II), and Zn(II) from the real chloride leaching solution. The N-(3-aminopropyl)-2-pipecoline and N-(3-aminopropyl)-2-pyrrolidinone resins showed high preferences for Ag(I) over Pb(II) in real solution. These results indicated that the polymers can be applied in the recovery of Ag(I).
PL
W artykule przedstawiono wyniki badań oraz analizy numerycznej zagadnień związanych z wilgotnością przegrody budowlanej wykonanej w technologii lekkiego szkieletu stalowego. Rezultatem badań było sporządzenie izoterm sorpcji oraz nasiąkliwości materiałów tworzących przegrodę. Na ich podstawie przeprowadzono symulację osuszania naturalnego przegrody przy założeniu, że materiały ją tworzące są nasączone wodą. Analiza numeryczna pozwoliła oszacować ubytek wody w przegrodzie zewnętrznej w zależności od początkowego stanu jej zawilgocenia w przyjętych okresach obliczeniowych.
EN
The article covers the results of research and numerical analysis of issues related to the humidity of a building partition made in the technology of a light steel skeleton. The result of the research was the preparation of the sorption isotherm and water absorption of the materials forming the barrier. On their basis, a simulation of the natural drying of the partition was carried out, assuming that the materials forming it are soaked with water. Numerical analysis, depending on the initial moisture level of the external partition, allowed to estimate the loss of water in the partition in the adopted calculation periods.
EN
The study’s aim was to develop a novel sorbent for removing the color Congo red (CR) from water by precipitating (Mg/Al)-layered double hydroxide (LDH) at the nanoscale onto the waterworks sludge surface as a byproduct. To achieve an effective sorbent with the removal of over 91.19%, The utilization of nanoparticles, the addition of 1 g of sludge to 50 mL of water, and a molar ratio of 2 (Mg/Al) were the optimal production conditions for sorbent. In batch experiments, the optimal operating parameters were found to be 0.5 g of adsorbent in 50 mL of CR, pH of CR solution equal to 3, and a contact time of 3 hours at 200 rpm with 25 mg/L dyes. According to the study, the adsorption capacity was 23.576 mg/g. Additionally, the pseudo-second-order and Langmuir models provided accurate descriptions of the sorption data.
7
Content available Alternative Ways of Extracting Oil from Water Bodies
EN
The article compares the use of sorption and sorption-coagulation methods for cleaning fresh and mineralized oil-containing waters. The sorbents used are thermally expanded graphite obtained by heat treatment of graphite bisulfate in a boiling layer, and activated carbon of BAU-A grade, which is widely used for purification of liquid media from oils and oil products. As an alternative to the sorption method, research was conducted on the application of the sorption-coagulation method with the simultaneous use of aluminum-containing coagulants: aluminum sulfate and aluminum hydroxochloride and activated carbon. It is shown that the advantages of using the sorption method using thermally expanded graphite are based on the high efficiency of oil extraction from water bodies and multiple regeneration of the spent sorbent.
EN
The aim of the research was to evaluate the effectiveness of the removal of Cu and Pb ions by algae. The experiments were carried out in the presence of two algal populations: a pure culture of Raphidocelis subcapitata, and a mixed chlorophyta population. The research involved a model study, experiments in the presence of wastewater from the manufacture of batteries, and the study of process kinetics. The wastewater pH was 4.0, and the initial concentrations of metal ions in the wastewater were 95.4 mg/L for Pb and 48.3 mg/L for Cu, respectively. The maximum sorption capacity of the pure Raphidocelis subcapitata culture was 14.8 mg/g d.m. for Pb, corresponding to the removal of 72% of lead, and 6.1 mg/g d.m. for Cu, corresponding to the removal of 43% of copper from the wastewater. The best ion sorption efficiency in the case of the mixed chlorophyta population was 7.0 mg/g d.m. for Pb, i.e., 61% removal of lead, and 12.8 mg/g d.m. for Cu, i.e., 69% removal of copper ions from the wastewater. The optimum duration of the process was found to be 1 hour, since the majority of biomass samples reached the maximum saturation after that time. On the basis of the obtained results (Lagergren models), it was found that the dominant mechanism of the process was chemisorption.
EN
In response to the trend toward sustainable management of by-products from the pulp and paper industry as well as plant waste, practical and economical methods are being developed to use them in a way that does not pose a threat to the environment. The main aim of the research was to study the possibility of using lignin and plant biomass as biosorbents for the removal of zinc ions from aqueous solutions. The secondary aim was to build an optimal multilayer system made of biosorbents selected during the research in order to obtain the highest sorption efficiency and to determine the best conditions of the sorption process. The effectiveness of zinc ion sorption was assessed using an appropriate combination of sorbents such as lignin, oat bran, rice husk, chitosan, pectin, sodium alginate, pine bark, coconut fiber and activated carbon, selected on the basis of literature data and the preliminary results of tests carried out using FTIR and AAS. The main component of the sorption system was lignin separated from black liquor. Results indicate that the best Zn sorption system was based on coconut fiber, lignin, and pine bark, for which the maximum sorption efficiency was 95%. The research also showed that the increase in the process temperature, the mass of biosorbents used and the alkaline pH are the factors that increase the efficiency of the sorption. It can be concluded that lignin and plant biomass can be used as ecological sorbents of zinc ions from water solutions. They are safe for the environment, produced from renewable sources, and are by-products or waste materials, which is part of the sustainable development and circular economy currently promoted in the EU.
EN
In the article, the questions of pectin extraction from citrus fruits are discussed. The research was carried out on the extracts obtained after squeezing the juice from citrus fruits: lemon (Georgian and Meer), Washington-Navel orange (Georgia and Turkey), Unshiu mandarin and the largest citrus fruit pomelo (China). Fruits collected in April-December were morphologically divided into flavedo, albedo, and tissue of fruit lobes, from which pectin isolates were obtained. The dependence of the production of isolates on the ratio of components of the hydromodule (acid: water), the type of acid (HCl, HNO3, H2SO4, H2C2O4 and C6 H8 O7), the duration of the process (1, 2, 3, 4, 5 and 24 hours) and the extraction temperature (20°) was investigated., 60°, 80°С), the type and time of fruit ripening, as well as the type of precipitation reagent pectin (AlCl3, CaCl2, 95% C2H5OH, isopropanol) and its concentration, duration of extraction (2h, 8h, 12h, 24h) and temperature (20, 40, 60, 70, 80°С). A technological scheme for obtaining pectin extracts was developed. Established: extraction of pectin depends on the type and time of fruit collection, temperature and duration of extraction, type of extractant; the ratio of water and acid in the hydromodule (Н2О : acid) should be 1:10; isolate should be extracted with HCl, H2SO4 or lemon acid; рН of the hydromodule of the isolate should be 1.8–2.0; Extraction of pectin should be carried out with 95% C2H5OH, during 24 hours, with a module of 1:3 at room temperature. Identification of pectin isolates and obtained samples was carried out by the method of high-efficiency liquid chromatography. Obtained: practically all samples contain pectin and galacturonic acid and do not contain polygalacturonic acid, which indicates the complete extraction of pectin.
EN
The article deals with the studies on complex sorption treatment of industrial waste of various industries to obtain new C, S, N-containing plastic lubricants, which provide antiwear, antifriction, high load-bearing and heat-resistant properties. The conditions for obtaining diethylammonium salt from the obsolete pesticide Banvel D and its sorption on a mixed sorbent, which consist of activated carbon (AC) and kieselguhr (K), have been established. The conditions for obtaining potassium diethyldithiocarbamate and its adsorption on the surface of the mixed sorbent (AC + K), followed by treatment with copper(II) sulfate of corresponding bis-(diethyldithiocarbamato)copper(II) sorbed on a solid surface, have been examined. The obtained substances of general composition [sorbent (AC + K)]·[(C2H5 )2NS(=S)S]2Cu were studied as active components of plastic lubricants, which provide their thickening, antiwear and antifriction properties. Industrial tribological research was carried out for friction pairs of four-row roller bearings of roller equipment used at private enterprise (PE) "Exim" (Kherson, Ukraine).
PL
W pracy zbadano efektywność adsorpcji barwnika (zieleni malachitowej) z roztworu wodnego na gotowych, wykonanych laboratoryjnie papierach, zawierających różnego rodzaju wypełniacze. W badaniach zastosowano typowe wypełniacze używane w papiernictwie oraz mikrocząstki siloksanowe niewykorzystywane do tej pory w technologii papieru. Określono również zależność stopnia adsorpcji, intensywności wybarwienia i przebiegu procesu wnikania wody w strukturę badanych papierów w zależności od ilości zastosowanych wypełniaczy.
EN
The study examined the effectiveness of dye adsorption (malachite green) from an aqueous solution on the laboratory made sheets containing various types of fillers. Typical fillers applied in papermaking and siloxane microparticles, previously unexploited in paper technology, were used in the research. The dependence of the efficacy of adsorption, the intensity of dyeing and the way of the process of water penetration into the structure of the tested papers, depending on the amount of fillers used, was also determined.
EN
In this article bio-based and cheap microcrystalline cellulose was used as a modificator for the synthesis of polymeric sorbents based on ethylene glycol dimethacrylate (EGDMA) and styrene (St). Cellulose was previously modified with methacrylic anhydride. The polymerization reaction was carried out in an aqueous medium with the addition of polyvinyl alcohol using the suspension polymerization technique. The chemical structure of the obtained sorbents was confirmed by ATR-FTIR analysis. In the next stage of the research, the materials were tested for their sorption capacity to remove organic dyes of acidic and basic type from aqueous solutions.
EN
A search for a sorbent capable of simultaneously extracting both phosphate anions and ammonium cations from a highly competitive medium like the biological environment of the human’s body was realized. For this purpose a comparative study of a sorption of ammonium and phosphate ions from aquatic environments in the absence of any backgrounds electrolytes and from Ringer's solution by activated charcoal, its oxidized forms and mineral amorphous sorbents – powdered titanium silicate, as well as spherically granular hydrous zirconium silicate and titanium dioxide, obtained by original methods of synthesis, as well as some of their ion-substituted forms in comparison with commercially available silica gel was carried out. The features of the sorption of ammonium cations and phosphate anions by the studied sorbents are discussed. It was established that sorption properties of the sorbents depend strongly from their chemical nature. It determines a selectivity of ion-exchange and a possibility of chemosorption processes in Ringer's solution. A relationship between the sorption of calcium cations and phosphate anions from Ringer's solution was supposed which made it possible to assume the chemosorption mechanism. Based on the sorption mechanism understanding the sorption properties of titanium silicate with respect to phosphate anions were considerable improved by converting the initial sample into Ca- and Ce-ion-substituted forms without significant loss of its high sorption properties toward ammonium cations
EN
The functional polymer containing heterocyclic ligands was synthesized by microwave modification of a crosslinked poly(vinylbenzyl chloride–divinylbenzene) matrix with thiomorpholine. The modification yield was 89.3%. The sorbent was used to recover Ag(I) from the synthetic and real chloride solutions. The maximum sorption capacity of Ag(I) was approximately 180 mg Ag/g. The sorption kinetic data were well-fitted to the pseudo-first-order kinetic model. The degree of silver desorption was approximately 50.0% using a 1.0% potassium cyanide solution in a 0.50% hydrogen peroxide solution. The resin retained its capacity toward Ag(I) in five consecutive sorption/desorption cycles. The thiomorpholine modified resin was highly selective toward Ag(I) in relation to Cu(II), Pb(II), Co(II), Ni(II), and Zn(II) from the real chloride leaching solution.
EN
The sorption of vanadium(V) ions from acidic solutions using the Pyrolox sorbent was studied at varying ions concentrations, pH, contact time and temperature. The investigated ions were determined by means of graphite-furnace atomic absorption spectrometry (GF-AAS). The sorption capacity of vanadium(V) ions was examined in the pH range 2-10. The adsorption capacities of vanadium(V) ions depend on the pH values. Therefore, the initial pH 2 of vanadium(V) results in the highest adsorption capacities. The sorption vanadium(V) kinetics was investigated. The experimental data were analyzed using the pseudo-first-order, pseudo-second-order forms, Elovich, and intra-particle diffusion models. The kinetics of vanadium(V) sorption is described by the pseudo-first-order in the best way. The results indicate the endothermic process of V(V) ions sorption. The presented results of vanadium ions recovery from the solutions obtained as a result of spent catalysts leaching indicate the possibility of vanadium recovery.
EN
As part of the work the high-pressure sorptomat - a novel apparatus for sorption tests under conditions of high gas pressure was developed. The sorption measurement is carried out using the volumetric method, and the precise gas flow pressure regulator is used in the device to ensure isobaric conditions and regulate the sorption pressure in the range of 0-10 MPa. The uniqueness and high precision of sorption measurements with the constructed apparatus are ensured by the parallel use of many pressure sensors with a wide measurement range as well as high precision of measurement - due to the use of precise pressure sensors. The obtained results showed, i.a. that the time of reaching the isobaric conditions of the measurement is about 6-7 seconds and it is so short that it can be considered a quasi-step initiation of sorption processes. Moreover, the results of the measurement pressure stabilization tests, during the CO2 sorption test on activated carbon, have shown that the built-in pressure regulator works correctly and ensures isobaric sorption measurement conditions with the precision of pressure stabilization of ±1% of the measurement pressure. The maximum range of sorption measurement using the high-pressure sorptomat is 0-86 400 cm3/g, and the maximum measurement uncertainty is ±2% of the measured value. The activated carbon sample used for the tests was characterized by a high sorption capacity, reaching 104.4 cm3/g at a CO2 pressure of 1.0 MPa.
18
EN
Adsorption is one of the basic surface phenomena involving saturation of the adsorbent surface with adsorbate molecules located near the adsorbent-adsorbate interface. The processes that are accompanied by the accumulation of adsorbate molecules on the surface are different from absorption, which is related to absorbing molecules into the whole mass and requires diffusion into the interior. If both processes can occur simultaneously, this phenomenon is called sorption. The aim of the present study was to characterize the sorption properties of selected sorbents and to assess the possibility of their application to support the treatment of coking wastewater from ammonium nitrogen, phenol, and TOC. The scope of the study included the examinations of sorption properties of selected sorbents (coal dust, coke dust, biochar), physicochemical tests of coking wastewater after biological treatment, as well as the examinations aimed to determine the dose of adsorbents and time needed to establish the equilibrium state of the process. The results obtained were analyzed for the effect of dose and contact time on the pollutant removal efficiency. The literature describes the efficiency of ammonium nitrogen removal from wastewater using chemical processes. However, there is a lack of studies on the removal of ammonium nitrogen, phenol, and TOC from industrial (coking) wastewater. The conducted study aimed to develop an alternative solution to the currently used conventional methods of removing high concentrations of pollutants from wastewater.
EN
Solid-phase spectrophotometry is one of the effective methods for detecting heavy metals in water. Environmental monitoring of the content of heavy metal ions in the aquatic environment is an urgent task for controlling the quality of wastewater from enterprises, as well as studying their impact on natural water bodies. In this study, an rapid and easy-to-use method for the determination of a number of heavy metals by solid-phase spectrophotometry was developed.
EN
Purpose: Diatomite from a deposit in Jawornik Ruski (Poland) has been selected as the material for study. The paper aimeds to show the possibility of using diatomite from the Carpathian Foothills as a sorbent of petroleum substances. Design/methodology/approach: Diatomite in the delivery condition (DC) and diatomite after calcination were used for this study. The material was calcined at 600, 650, 750, 850 and 1000°C. The diatomaceous earth was then granulated. The morphology of diatomite was observed using SEM. Particle size distribution was determined by Laser Particle Analyzer, chemical composition was determined by XRF, and mineralogical composition by XRD. Specific surface area, pore volume and pore size were determined. Thermal analysis (TG, DTA) was carried out. Absorption capacity tests were performed and the effect of diatomite addition on water absorption of concrete samples was determined. Findings: Within the framework of the study, it was shown that diatomite from the Jawornik deposit could be successfully used as a sorbent for petroleum substances. The absorption capacity of calcined at 1000°C diatomaceous earth was 77%. The obtained result exceeds the effectiveness of previously used absorbents, for which the sorption level is 60-70%. This allows commercial use of diatomite from deposits in Poland. In addition, water absorption tests have shown that diatomaceous earth can successfully replace cement used in concrete productione. The most favourablee effect on the reduction of water absorption is the addition of diatomite in the amount of 10%. Practical implications: The properties of diatomaceous earth from the Jawornik Ruski deposit indicate its high potential for use in the synthesis of geopolymers, which is important not only from an economic but also from an ecological point of view. Originality/value: The novelty of this work is the demonstration of the possibility of using diatomite as a sorbent of petroleum substances with high efficiency, exceeding the previously used sorbents.
first rewind previous Strona / 20 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.