Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 84

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  shear
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
Purpose: The study aims to determine the effect of the treatment of alkali solution concentration and soaking time on the mechanical properties of coconut fibre. Design/methodology/approach: The study consists of preparing materials and equipment, immersion of coconut fibre in an alkali solution, drying in a furnace, testing, analysis of test results, and conclusions. Materials and equipment used are coconut fibre, alkali solution, polyester matrix, distilled water, furnace, hydrolysis test, tensile test, and SEM analysis. The sample had two treatments; the first was coconut fibre, which was soaked in the sodium hydroxide solution with 5%, 10%, 15%, and 20% concentrations for 3 hours. The second treatment was coconut fibre soaked in the sodium hydroxide solution with a concentration of 20% for 1, 5, 7, 9, and 11 hours. The samples were then dried in a furnace at 90ºC for 5 hours, and then a hydrolysis test, tensile test, pull-out test, and SEM analysis were carried out. Findings: The results suggest that for immersion in an alkali solution of 20%, the highest tensile strength of coconut coir fibre was obtained in soaking for 3 hours at 280.94 N/mm2, and the highest bonding strength between coconut coir fibres with a matrix polyester was obtained at 5 hours immersion at 7.86 N/mm2. Research limitations/implications: In the given study, coconut fibre was treated by soaking it in 5%, 10%, 15%, and 20% sodium hydroxide solution. Then, a single fibre tensile test was carried out, and a pull-out test was carried out to determine the mechanical properties of coconut fibre as a required effect that had been given. Subsequent studies can be carried out with other treatments using other chemical solutions, such as hydrogen peroxide or potassium permanganate. Originality/value: The tensile strength of coconut fibre without treatment was 186.42 N/mm2, whereas after being immersed in 20% sodium hydroxide solution, the tensile strength became 280.94 N/mm2. Likewise, the shear strength of the interface between the fibre and the polyester matrix was 1.85 N/mm2 for untreated coconut fibre to 3.09 N/mm2 for coconut fibre soaked in a 20% sodium hydroxide solution. The results of the study are intended as data for the use of coconut fibre as a natural fibre-reinforced composite material, for example, as a raw material for fishing boat walls.
EN
Magnetorheological (MR) fluids are classified as smart materials. They are non-homogeneous substances of complex composition and are characterised by complex rheological properties. In addition, the characteristics of their behaviour can be actively affected by the magnetic field, both in terms of its value and spatial orientation. This paper presents the results of shear stress measurements of a commercial magnetorheological fluid using a plate-plate type geometry with a modified working surface. The purpose of the study was to determine the effect of changing the roughness of the measuring plate on the obtained shear stress results. Controlled shear rate tests and Magneto Sweep measurements were carried out for three MR fluid layer heights. The tests were carried out at magnetic field induction in the range of 0 to 680 mT. The study showed that the measurement system's geometric parameters significantly affect the MR fluid's behaviour under test. It was shown that increasing the surface roughness can increase or decrease the measured value of shear stress depending on the test parameters.
PL
Ciecze magnetoreologiczne (MR) zaliczane są do grona materiałów inteligentnych. Są to substancje niejednorodne o złożonym składzie i charakteryzują się złożonymi właściwościami reologicznymi. Ponadto charakterystyki ich zachowania mogą być aktywnie kształtowane przez pole magnetyczne, zarówno ze względu na jego wartość, jak i orientację przestrzenną. W pracy przedstawiono wyniki pomiarów naprężenia stycznego komercyjnej cieczy MR z wykorzystaniem geometrii pomiarowej typu płytka–płytka o modyfikowanej powierzchni roboczej. Celem badań było określenie wpływu zmiany chropowatości płytki pomiarowej na uzyskiwane wyniki naprężeń ścinających. Przeprowadzono badania z kontrolowaną szybkością ścinania oraz pomiary typu Magneto Sweep dla trzech wysokości warstwy cieczy MR. Badania przeprowadzono przy indukcji pola magnetycznego w zakresie 0 do 680 mT. Badania wykazały, że parametry geometryczne układu pomiarowego istotnie wpływają na zachowanie się badanej cieczy MR. Wykazano, że w zależności od parametrów badania zwiększenie chropowatości powierzchni może powodować zwiększenie lub zmniejszenie rejestrowanej wartości naprężeń stycznych.
PL
W artykule przedstawiono rodzaje kotew metalowych stosowanych do betonu i sposoby przekazywania obciążenia z ich korpusu na podłoże. Omówiono różnice i ograniczenia wynikające z budowy poszczególnych kotew. Przedstawiono modele zniszczenia i zachowanie się kotew na skutek ich wyciągania bądź ścinania. Poruszono także niezwykle ważny aspekt instalacji kotew w podłożu zarysowanym.
EN
The paper presents the types of metal fasteners used in concrete and the ways of transferring the load from their body to the concrete. Differences and limitations resulting from the construction of particular fasteners are discussed. Models of failure and behaviour of the fasteners due to tension or shear are presented. An extremely important aspect of anchor installation in cracked concrete is also discussed.
PL
W pracy przedstawiono sposoby wzmacniania elementów żelbetowych przy użyciu biernych i czynnych systemów wzmacniania materiałami z włóknami węglowymi CFRP przyklejanymi na powierzchni betonu lub wklejanymi w betonowe bruzdy. Omówiono zagadnienia wzmocnień dotyczące zginania i ścinania sposobem biernym oraz czynne systemy wzmocnień. Zaprezentowano wyniki badań własnych prowadzonych w Katedrze Budownictwa Betonowego PŁ w zakresie wzmocnień na zginanie metodami EBR oraz NSMR przy użyciu biernych i czynnych technik. Dodatkowo przedstawiono wyniki badań własnych wzmocnień na ścinanie przy użyciu taśm i mat przyklejanych na zewnętrznej powierzchni oraz taśm wklejanych metodą NSMR.
EN
The paper presents strengthening methods of reinforced concrete elements using passive and active strengthening systems with CFRP carbon fibre materials bonded on the concrete surface or embedded in concrete grooves. The issues of passive and active flexural and shear strengthening have been discussed. The results of own research, carried out at the Department of Concrete Structures, have been presented in the field of flexural strengthening by EBR and NSMR methods, using both passive and active techniques. Additionally, the results of the own research on shear strengthening using strips bonded on the surface using the NSMR method have been presented.
EN
Damage occurring on a reinforced concrete beam (e.g. spalling) can reduce beam’s capacity to withstand external loads. The damage becomes more critical if it is occurred in the shear span since it may lead to shear failure. Patching to the damage zone by suitable patch repair material could be the best option in restoring the shear capacity of the beam. This research investigates the shear recovery of patched reinforced concrete beams with web reinforcement. The patching material used is unsaturated polyester resin mortar. The shear recovery is assessed on the basis of the patched beam’s behavior under flexure-shear load in comparison with those of normal beams. The behavior observed include cracking failure mode, strains of the reinforcements, and load-deflection behavior. The results indicate that the UPR mortar is capable to restore the strength of the damage reinforced concrete beam. The characteristic of UPR mortar (low elastic modulus and high strength) can be the origin of the overall behavior of the patched reinforced concrete beams.
PL
Przedstawiono analizę wyników badań ścian wykonanych z bloczków ABK, wzmocnionych nowoczesnymi materiałami FRP. Omówiono zmiany parametrów wytrzymałościowych, odkształceniowych i sposobu zniszczenia ścian wzmocnionych w odniesieniu do ścian niewzmocnionych. Potwierdzono pozytywny wpływ zbadanego ułożenia mat CFRP, wskazując jednocześnie na ograniczenie przy stosowaniu mat GFRP.
EN
The paper presents an analysis of the test results for walls made of AAC blocks strengthened using modern FRP materials. A detailed discussion of changes in strength and deformation parameters as well as the mode of failure of strengthened walls in relation to unstrengthened walls is presented. Tested arrangement of CFRP sheets has been proven to have a positive effecl. At the same time, limitation in the use of GFRP sheets was indicated.
PL
Przedstawiono postępowanie przy sprawdzaniu nośności przekroju ściany ścinanej przy wykorzystaniu wykresu interakcji, zbudowanego według zaleceń Eurokodu 6 (prEN 1996-1-1:2019). Sformułowano niezbędne równania określające nośność przekroju w funkcji pionowego obciążenia NEd. Przeanalizowano wpływ kształtu ściany oraz mimośrodu obciążenia pionowego na kształt wykresu interakcji.
EN
This paper describes the procedure for verifying shear load capacity by means of the interaction diagram drawn as specified in Eurocode 6 (prEN 1996-1-1:2019). Necessary equations for determining load-carrying capacity of cross-section against vertical load NEd were worked out. The effect of wall shape and eccentricity of vertical load on the shape of the interaction diagram was analysed.
EN
The evaluation of friction is an important element in the verification of stability and the determination of the bearing capacity of piles. In the case of cyclic stress, the soil-pile interface has a relaxation which corresponds to a fall in the horizontal stress which represents the normal stress at the lateral surface of the pile. This paper presents an explicit formulation to express the degradation of the normal stress after a large number of shear cycles as a function of cyclic parameters. In this study we are interested in the exploitation of the cyclic shear tests carried out by Pra-ai with imposed normal rigidity (CNS) in order to demonstrate the phenomenon of falling of the normal stress. The approach presented in this paper consists in proposing a simple expression for estimating the degradation of normal stress as a function of cyclic shear parameters after a large number of cycles. The validation of this approach is verified by the application of this formulation to a real case where the comparison of the simulations made by this approach with those recorded on site shows the good adaptation of this approach to this type of problems.
EN
This study evaluates the structural performance of reinforced concrete interior beam–column joints having high-strength screw-type steel bars mechanically connected with couplers. A total of six full-scale specimens were cast and subjected to repeated cyclic lateral loads. High-strength screw-type reinforcing bars, with a yield strength of 690 MPa, were used as longitudinal reinforcement of the specimens. The main test variables were designed with and without couplers and the longitudinal reinforcement ratio of the beam. The couplers were applied to the plastic hinge zones of columns and beams to maximize their impact. The experiment confirmed that the flexural cracks generated near the couplers slightly influenced the initial stiffness, the yielding point of the longitudinal reinforcement of the beams, and the displacement at peak load of the specimens. However, the load versus story drift relationship, the peak load, and the ductility capacity of the specimens were not significantly affected. In addition, the analytical results obtained using the current structural design codes and finite element analysis were similar to the experimental results.
10
Content available remote The torsional and shear behavior of steel fiber reinforced RC members
EN
Beams and columns are one of the important structural elements of buildings to take up transverse loads such as axial load, bending moment, shear, and torsion. Present work is an experimental investigation on the shear, torsion, and axial load behavior of the structural members like columns and/or beams. The reinforced concrete members with 0, 30, and 60 kg/m3 of steel fibers were tested for torsion, shear and axial loading for this study. The twist angle, the load-deflection behavior, the ultimate shear strength, the torsional moment, and the critical moments were obtained for the loading type and steel fiber ratios. The results show that the increasing steel fiber ratio, increased the torsional moment capacity and decreased the shear strength capacity. On the other hand, increasing the steel fiber content increased the both axial load and moment capacity of RC columns. The shear strength and the torsional moment capacities are defined by the provision of current codes of practice such as ACI318-19, Eurocode-2, British, Australian and Turkish Standards.
EN
Determination of shear-load-bearing capacity of reinforced concrete beams (according to the current normative documents), comprises particular recommended values, which do not depend on the parameters of the sample or load. This article de-scribes the methodology for determination the shear strength with suggestions for calculation the coefficient CRd,c and compressed element tilt angle Ѳ while reinforced concrete elements` calculation with the use of “truss model”. In order to confirm the methodology 4 reinforced concrete beams were tested. Tests were performed in order to investigate each particular inclined section separately. Variable parameter was the relative shear span a/d, with its values a/d=2, a/d=1,5 and a/d=1. Another parameter was the usage of composite strengthening system, made for relative shear span a\d=2. Samples were tested as single-span beams subjected to short-term loading. The calculation with the use only the values, given in norms showed significant divergence of results. Using the refined parameter values provided the convergence of results within 16-29% toward overestimation of the experimental data. The composite reinforcement system calculation showed the overestimation of 23%, which is within the same limits as for the control samples.
EN
Flocculation is crucial for the treatment of coal tailings in industries. In this paper, the effects of shear-induced breakage and reflocculation of the floc, settling, and dewatering of coal tailings were investigated. The results show that as shear strength increases, the settling velocity of flocculated tailings decreases. A shear rate of 200 rpm (170.6 s-1) leads to the loss of half the settling velocity. However, at high dosage cases, 200 rpm-300 rpm shear could improve the clarity of the supernatant. Small particles are flocculated preferentially, especially for particles below 10 µm. With the increase in dosage, the critical particle size for the occurrence of flocculation increases. The chaos index proposed can quantitatively reflect the degree of flocculation or reflocculation of coal tailings. At high dosage conditions, shear could enhance the dewatering performance of flocs by reconstructing the filter cake. Controlling the structure of flocs by dosage and shear strength can help obtain appropriate settling, clarifying, and dewatering performance of coal tailings.
EN
The reliability of building structures is a very important design criterion. The required level of security depends not only on the function and purpose of the facility, but also on the parameters considered at the design stage. There are factors to that with some probability they increase the uncertainty of the adopted parameters in the calculations, as a result of which the structure fails. It happens that execution errors are made during the process of creating an object. One of the significant disadvantages is the increase in the reinforcement cover thickness compared to the designed value, and hence the reduction of the effective depth of cross-section. The purpose of the analyzes presented in the article was to estimate the influence of the top reinforcement cover thickness on the reliability and bending and punching resistance in the reinforced concrete slab being part of the slab-column system. The reliability index βc was determined by the Cornell method. The analysis focused on a fragment of a cross reinforced slab, which is an element of the column-slab structure of a shopping mall. The ARSA 2019 program was used for the analysis of the structure. The impact of the coefficient of variation of the effective depth on the reliability index was also analyzed. The obtained values were compared with the target value of the reliability index read from EN 1990.
EN
Recently, textile reinforced concrete (TRC) has been intensively studied for strengthening reinforced concrete (RC) and masonry structures. This study is to experimentally explore the effectiveness of application of carbon TRC to strengthen RC beam in flexure and shear. Concerning the cracks formation, failure modes, ultimate strength and overall stiffness, the performance of the strengthened beams compared to the control beams were evaluated from two groups of tests. The test results confirm that the TRC layers significantly enhance both shear and flexural capacity of RC beams in cracking, yielding and ultimate loads. All of the tested specimens were also modelled using ABAQUS/CAE software, in order to validate the experimental results. The numerical results show that the simulation models have good adaptability and high accuracy.
EN
In this research, nonlinear analysis of composite shear walls (CSWs) with a gap between reinforced concrete wall and steel frame is investigated under cyclic loading by the use of the finite element method (FEM) software ABAQUS. For the purpose of the verification, an experimental test is modelled and comparison of its obtained result with that of the experimental test demonstrates an inconsiderable difference between them; therefore, the reasonable accuracy of the modelling is revealed. Then, effects of different parameters on the behaviour of the CSWs are examined. Gap size between reinforced concrete wall and steel frame, reinforcement percentage, steel sections of beams and columns, and existence of reinforced concrete wall are considered as parameters. It is concluded that change of the parameters affects the ultimate strength, ductility, and energy dissipation of the system. A steel shear wall (SSW) is also modelled and compared with the CSWs. Buckling of the walls is presented as well.
EN
Main parameters, which characterize shear strength, are crack distribution, width of diagonal crack opening and angle of inclined crack. There are in this article, comparison crack resistant of testing reinforced concrete (RC) beams on the shear with such variable parameters like presence or absence internal reinforcement, different shear span, and presence or absence external composite reinforcement. Shear span (relative span to effective depth ratio) was acquired the following values: a/d=2, 1.5, 1. For internal reinforcement, rebar’s A240C with diameter 8 mm and steps 100 mm was chosen. The composite FRCM system was like external reinforcement with three stripe of composite fabric with width 70 mm and step 100 mm. Eight RC beams were tested. After testing, we discovered that the most influenced on the serviceability capacity was shear span. Internal transverse reinforcing increased shear strength on the same level and it was independent from shear span and other factors. Only quantity of reinforcing determine level of increasing shear capacity. FRCM system is efficient strengthening system, which significant increase shear crack resistant for RC beams. External FRCM reinforcing increase shear crack resistance on the same percentage and independent from presence or absence internal reinforcement.
PL
Opisano model zniszczenia elementów wzmocnionych kompozytami CFRP klejonymi do powierzchni elementów żelbetowych, w których nie jest wymagane zastosowanie zbrojenia poprzecznego. Wskazano, że jednym z ważniejszych parametrów wpływających bezpośrednio na nośność elementów jest uplastycznienie zbrojenia głównego oraz działanie sił poprzecznych.
EN
The paper describes a failure model of elements strengthened with CFRP composites glued to the surface of reinforced concrete elements, in which the use of shear reinforcement is not required. It was pointed out that one of the most important parameters directly affecting the bearing capacity of the elements is the yielding of the main reinforcement and the action of shear forces.
PL
Przedstawiono wyniki serii badań elementów stalowych regałów wysokiego składowania w tym: połączenia zaczepowego między słupem a belką nośną, ścinania na zaczepach belek nośnych oraz nośności rygli. Specyfika pracy regałów wysokiego składowania sprawia, że badania są niezbędną częścią procesu projektowania tego rodzaju konstrukcji. Wyniki z badań będą stanowiły podstawę opracowania i walidacji modelu numerycznego.
EN
The article summarizes the results of experimental tests carried out on elements of steel static storage pallet rack system, including: bending tests on beam end connectors, shear tests on beam end connectors and connector locks, bending tests on beams. The specificity of the way pallet racks are constructed and transferring the applied loads makes testing an indispensable part of the design process of this type of structures. Test result will be used to create and validate the numerical model.
EN
The research presented in this paper is focused on simulation of a propagative instability called Lueders bands using large strain plasticity with Huber-Mises-Hencky yield function. Two types of regularization are used: gradient-enhanced plasticity and viscoplasticity. Regularization is needed to avoid mesh sensitivity associated with the classical continuum description. A special sample is used to study Lueders band propagation in shear, its shape is motivated by experiments. The gradient-enhanced model used in computation provides a more reliable regularization than the viscoplastic model.
PL
W artykule zaprezentowano symulacje numeryczne propagujących się pasm lokalizacji odkształcenia nazywanych pasmami Luedersa wykorzystując model dużych deformacji z funkcją plastyczności Hubera-Mises-Hencky'ego. Użyto dwóch typów regularyzacji, gradientowej plastyczności oraz lepkoplastyczności. Regularyzacja jest niezbędna celem uniknięcia zależności wyników od gęstości siatki elementów skończonych. Do przeprowadzania obliczeń w warunkach czystego ścinania została użyta specjalna próbka, której kształt motywowany jest eksperymentami. Model gradientowy wykazał lepsze możliwości regularyzacyjne niż model lepkoplastyczny.
20
Content available Metoda DIC
EN
The article presents tests of a reinforced concrete beam strengthened in a shear with PBO-FRCM composite materials. Measurement of the deformation of the composite was carried out using two methods - with strain gauges and the optical DIC method (Digital Image Correlation). The DIC method consists in taking a series of photographs of the tested object before and during loading. The surface of the tested element must have randomly spaced spots that are applied to the object before measurement. During the study, the cameras monitor the shifting of spots against each other, which in comparison to the reference image before loading gives information about strains and stresses of the tested element. Measurements of deformation of composite materials using strain gauges are difficult to clearly analyze, because the strain gauge is in a specific, limited place, which does not correspond to the work of the entire composite. In addition, the strain gauge tends to break at the place of crack. The article discusses this problem by presenting the results of deformation of PBO-FRCM composite meshes measured in two mentioned ways, their comparison and discussion of results.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.