Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  shale oil
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
One way to cut down the consumption of diesel fuel in domestic heating in Jordan is to blend it with shale oil, which may be extracted from oil shale. This leads to a cut down in the national fuel bill in Jordan. Unfortunately, shale oil contains significant amounts of sulfur as impurities and upon burning sulfur oxides are emitted causing a negative environmental impact, and hence desulfurization of such fuel blends is essential. This may be achieved by adding activated carbon to the fluids. The process of removing sulfur from shale oil is crucial for safeguarding the environment, human well-being, and equipment, as well as meeting regulatory requirements and creating superior-quality goods. In this study, a domestic boiler was utilized to evaluate the degree of desulfurization process of blends of diesel and shale oil fuels upon their burning in a domestic boiler, to achieve this, blends of both fuels were prepared with varying amounts of shale oil (10%, 20%, 30%, and 40%) and various amounts of activated carbon were added to the prepared mixtures of diesel fuel and shale oil. The assessment of performance included examining the environmental impact, specifically by analyzing exhaust gases to measure the concentration of Sulfur Oxide (SO2). It was found that an increase in the concentration of shale oil in the mixture led to an increase in the concentration of SO2. However, adding more activated carbon to the mixture from the fuels resulted in a decrease in the SO2 concentration. The lowest SO2 concentration was observed when 1g of activated carbon was added per liter of the fuel mixture at a 20% concentration of shale oil, and 0.6g of activated carbon per liter of the fuel mixture at a 40% concentration of oil shale.
EN
The interaction between groundwater and surface water plays an important role in the function of riparian ecosystems and sustainable water resource management. Hydraulic fracturing, an unconventional oil and gas well stimulation method, has increased dramatically in North America in an effort to exploit previously inaccessible shale oil and gas reserves. Hydraulic fracturing often requires several thousand cubic meters of water to fracture the source formations. Use of such a high volume of water has raised considerable public concern over the sustainability of this activity and the potential impacts on surface water and groundwater. This paper provides a review of the published literature addressing the effects of water withdrawal for hydraulic fracturing on surface water and groundwater. The potential effects of such withdrawal are: decreased volume of water in rivers, streams, lakes and aquifers; alteration of natural flow regimes; regional water shortages during periods of drought; creating conflicts with other water users in water-stressed regions; inadequate downstream water availability; reduced downstream water quality for human uses, due to less water availability for dilution; and degradation of habitat and aquatic ecosystem function, impacting local wildlife. This review demonstrates that relatively little attention has been paid to quantify and understand these interactions, and suggests that there is a significant need for further research in this area to address the currently limited availability of data.
EN
In the Baltic-Podlasie-Lublin Basin, four potential lower Paleozoic shale reservoirs are identified: the Piaśnica, Sasino and Jantar formations, as well as the Mingajny shale. These units were diachronously deposited during the starved stages of Caledonian foredeep basin development, in the course of rising or high eustatic sea level. Across most of the basin, the shale formations analysed are saturated with light oil and condensate, and they are buried to depths of 2300-3500 m. The shale reservoirs reach the wet gas window at burial depths of 2800-4000 m, while dry gas accumulations occur at depths exceeding 3500-5000 m, except in the Biłgoraj-Narol Zone. The shale analysed might be generally classified as a moderate to low quality, and locally high quality, unconventional reservoir. Within the shale net pay zones, the average TOC content is 2-5 wt.% TOC. The exceptions are the Piaśnica Formation, for which this is 5-12 wt.%, and the Mingajny shale, which is TOC-lean (1.4-1.7 wt.%). The thickness of the shale net pay intervals in the most favourable locations, mainly on the Łeba Elevation, generally reaches 20 m, and locally exceeds 35 m. The shale reservoirs are saturated with hydrocarbons of good quality. Their permeability is low to moderate, often in the range of 150-200 mD, while total porosity average per borehole is commonly exceeds 6 %, reaching up to 10% at maximum, which might be considered as moderate to good. The clay minerals content is moderate to high (30-50%), and geomechanical characteristics of the shale formations are intermediate between brittle and ductile. No overpressure occurs in the basin, except for a dry gas zone in the SW Baltic Basin. In the Biłgoraj-Narol Zone, and to a lesser degree also in the Lublin region, pronounced tectonic deformation significantly limits shale gas/oil potential. Among 66 exploration boreholes drilled in the basin so far, only 5 were lateral boreholes with representative production test results. Hydrocarbon flow from the best boreholes was low to moderate, equal to 11.2 to 15.6 thousand m3/day for gas, and 157 bbl/day (~21.4 ton/day) for oil. There is, however, high potential to improve production flow rates, connected with the fracturing of two net pay intervals at one time, as well as with significant technological progress in the exploitation of shale basins during the last 5 years. Commercially viable production might be achieved for a single borehole with estimated ultimate recovery exceeding 30-50 thousand tons of oil, or 60-90 million m3 of gas.
EN
Three-dimensional, structural and parametric numerical modelling was applied to unravel the unconventional hydrocarbon potential of a W-dipping, Lower Palaeozoic mudrock succession, which subcrops for some 700 km in the Baltic, Podlasie and Lublin basins across the SW margin of East European Craton in Poland. Input data comprised structural and thickness maps of Ordovician and Silurian strata and the results of thermal maturity (mean vitrinite-equivalent reflectance, % Ro) and total organic carbon (TOC, % wt.) modelling. A new, spatial interpretation of vitrinite-reflectance variability indicates that the regional, W-increasing thermal maturity pattern breaks into a series of domains, bounded by abrupt maturity variations. In total, 14 tectono-thermal domains were recognised and their boundaries traced to known and inferred faults, mostly of NW‒SE and NE‒SW orientations. On the basis of a combination of thermal maturity and total organic carbon levels (0.6% > Ro<2.4%, and TOC >1.5% wt.), good-quality, unconventional reservoirs can be expected in the Sasino Formation (Caradoc) and Jantar Formation (early Llandovery) in the central and western Baltic Basin. The Jantar Formation also is likely to be prospective in the western Podlasie Basin. Marginal-quality reservoirs may occur in the Sasino and Jantar formations within the Podlasie and Lublin basins and in the Pasłęk Formation (late Llandovery) across all basins. Poor- to moderate-quality, unconventional reservoirs could be present in the Pelplin Formation (Wenlock) in the Lublin and southern Podlasie basins. In spite of a considerable hydrocarbon loss during multiphase basin inversion, the Ordovician and Silurian mudrocks still contain huge quantities of dispersed gas. Successful exploitation of it would require the adoption of advanced fracking methods.Lower Palaeozoic, shale gas, shale oil, Baltic Basin, Lublin-Podlasie Basin, total organic carbon, thermal maturity, structural-parametric model.
EN
Thermal maturity modelling was carried out in over sixty wells along the SW margin of the East European Craton (EEC). The burial and thermal history modelling of the EEC, using thermochronological data, allowed the construction of burial history maps showing its geological development in the Phanerozoic. These results have proved that the Ordovician and Silurian source rocks occurring at the SW margin of the EEC reached a maximum palaeotemperature in the Palaeozoic, mainly during Devonian-Carboniferous time and at the latest during the Silurian in the most westerly part of this margin, along the Teisseyre-Tornquist Zone. In Mesozoic and Cainozoic time, the Ordovician and Silurian strata generally were subjected to cooling or to very minor heating, certainly below the Variscan level. The maximum burial and maximum temperature of the Ediacaran-Lower Palaeozoic strata were reached during the Early Carboniferous in the Baltic Basin and during the Late Carboniferous in the Lublin area, and even in the Early Permian in the SE corner of the Lublin Basin. Thus, the main period of maturation of organic matter and hydrocarbon generation in the Ordovician and Silurian source rocks was in the Late Palaeozoic (mainly Devonian-Carboniferous) and in the westernmost zone along the Teisseyre-Tornquist line at the end of the Silurian.
PL
Prezentowany artykuł porównuje światowe rynki złota i ropy naftowej w celu wyjaśnienia zaskakująco wysokiej korelacji cen obu surowców od roku 1970 oraz imponującego ich wzrostu w porównaniu z cenami praktycznie wszystkich pozostałych surowców. Autorzy sugerują, że rozwój sytuacji na rynku naftowym i wynikające z niego skutki makroekonomiczne wpłynęły na inwestycje w złoto, zapewniając w ten sposób najbardziej wiarygodne wyjaśnienie dla synchronizacji zmian cen obu towarów. Analizując nadzwyczajne wzrosty cen ropy naftowej i złota, w szczególności w porównaniu z cenami innych metali i innych surowców mineralnych, autorzy zakładają, że najpierw nastąpił wzrost cen ropy, wywołany przez zewnętrzne ograniczenia dotyczące zdolności produkcyjnych. W konsekwencji wzrosła cena złota, niejako odpowiadając na potrzebę bezpiecznych inwestycji dla zachowania wartości środków inwestycyjnych, co jest cechą charakterystyczną złota, której nie posiadają inne metale i surowce mineralne. Prezentowany artykuł omawia także prawdopodobną ewolucję cen tych ważnych surowców argumentując, że ceny ropy w najbliższych dziesięcioleciach utrzymają swój poziom lub obniżą się, a ceny złota będą nadal kontynuowały wzrost, co doprowadzi do zniesienia związku pomiędzy cenami ropy i złota.
EN
This paper compares the global markets for gold and oil so as to explain the surprisingly high correlation of the two materials’ prices since 1970, and the exceedingly impressive rise of both price series compared with that of virtually all other primary commodities. We propose that developments in the oil market, and the resulting effects on the macroeconomy, influenced investment activity in gold, thus providing the most plausible explanation for the two commodities’ price synchronization. Our view on the extraordinary price increases of oil and gold, compared to a broad category of metals and minerals, is that oil prices rose first based on above-ground hurdles that restrained the capacity to produce, and gold prices then reacted as they were pushed up by rising safe-haven investment to store value – an attribute not shared by other metals and minerals. The paper also comments on the likely future price evolution of these important materials, arguing that oil prices will stagnate or weaken in the coming decades but that gold prices will continue to ride relatively high – thus leading to a collapse of the oil/gold price connection.
EN
The aim of the paper is to identify which factors influence the production of crude oil in Africa and what it means for the investments in oil production on this continent in the future. In order to identify these factors it is necessary to create a function of production. A number of variables have been chosen, which are likely to have an influence on the level of exploitation, such as the price of oil, oil consumption in Africa, oil import by the US, etc. The estimation of the function was based on the statistical analysis of empirical data. For the years 1980–2015 the linear regression model was estimated using the method of ordinary least squares (OLS) and econometric software – GRETL. In order to find the best model the academic research on the global oil market has been taken into account and a variety of statistical and econometric tests have been made. According to the literature on the subject, the production of crude oil in Africa is mostly affected by two players – Europe and the US. The first includes the member states of the OPEC. There are also countries of West Africa which in the past exported most of their production to the US. The model shows that the situation has changed after the “shale revolution”, which reduced the level of imported oil and consequently the level of African production. Moreover, an interesting trend has been noticed, namely that when oil prices go up, the oil production in Africa decreases. The reason for this phenomenon is that high oil prices make American shale plays more profitable than West African petroleum basins. The model aggregating macroeconomic indicators and statistics is a very useful management tool and it reveals the problems of the efficiency of investments in oil production in Africa.
PL
Celem niniejszego artykułu jest identyfikacja czynników determinujących poziom wydobycia ropy naftowej w Afryce, a następnie określenie, co to oznacza dla potencjalnych przyszłych inwestycji na tym kontynencie. Aby rozpoznać wspomniane czynniki, niezbędne jest stworzenie w pierwszej kolejności funkcji wydobycia. Stąd też wybrano szereg zmiennych, mogących mieć wpływ na poziom eksploatacji, m.in. cenę ropy naftowej, poziom jej konsumpcji w Afryce, import ropy do Stanów Zjednoczonych i in. Następnie dokonano estymacji funkcji, posiłkując się statystyczną analizą danych empirycznych. Dla lat 1980–2015 oszacowano za pomocą oprogramowania ekonometrycznego GRETL model liniowej regresji według metody najmniejszych kwadratów (MNK). Aby wybrać model najlepiej odzwierciedlający rzeczywistość, otrzymane wyniki zweryfikowano zarówno danymi pozyskanymi z literatury poświęconej światowemu rynkowi ropy, jak i przy użyciu odpowiednich testów statystycznych oraz ekonometrycznych. Nawiązując do literatury przedmiotu, na poziom wydobycia ropy naftowej wAfryce mają wpływ przede wszystkim dwaj gracze – Europa i Stany Zjednoczone. Z pierwszym z nich związane są przede wszystkim państwa członkowskie organizacji OPEC. Z drugiej strony kraje Afryki Zachodniej w większym stopniu eksportują ropę do Stanów Zjednoczonych. Oszacowany model pokazuje, że sytuacja ta zmieniła się po tzw. łupkowej rewolucji i spadku ilości importowanej przez Amerykę ropy, a co za tym idzie i wydobycia w Afryce. Co więcej, zaobserwowano interesującą tendencję do zmniejszenia wydobycia w Afryce, kiedy ceny ropy rosną. Przyczyną tego zjawiska może być fakt, że wysokie ceny surowca implikują wzrost opłacalności eksploatacji złóż ropy łupkowej w Stanach Zjednoczonych, będących bezpośrednią konkurencją dla złóż afrykańskich. Model, który agreguje makroekonomiczne wskaźniki i dane statystyczne jest bardzo użytecznym narzędziem, które wykazuje efektywność inwestycji w wydobycie ropy naftowej w Afryce.
PL
Rewolucja łupkowa, opierająca się na gazie i ropie z łupków, nieoczekiwanie i jednoznacznie zaczęła zmieniać krajobraz energetyczny Stanów Zjednoczonych. Należy się spodziewać jej rozszerzenia poza terytorium Stanów Zjednoczonych, z daleko idącymi konsekwencjami nie tylko dla globalnej energetyki, ale także dla makroekonomii i polityki wielu krajów. Celem niniejszej pracy jest lepsze zrozumienie uwarunkowań, które doprowadziły do wyżej wspomnianej rewolucji, ocena metod eksploatacji oraz związanych z nimi zagrożeń dla środowiska naturalnego, przedstawienie scenariuszy, jakich można racjonalnie oczekiwać w nadchodzących dekadach, jak i próba zarysu wpływu dojrzewającej rewolucji łupkowej na polityczne i ekonomiczne decyzje dokonywane przez kraje eksportujące energię, jak również ją importujące. Prognozuje się, że najbliższe dwie dekady w Stanach Zjednoczonych dadzą początek szeroko zakrojonej ekspansji pod względem aktywności na rynku gazu i ropy z łupków. W skali globalnej, liderami przemysłu łupkowego mogą być te kraje, które są już znaczącymi producentami gazu i ropy naftowej. Ustanowienie ramowych założeń mających umożliwić i wspierać bezpieczny rozwój przemysłu łupkowego jest warunkiem koniecznym dla rozpoczęcia eksploatacji łupków. Najważniejszą konsekwencją udanej rewolucji łupkowej będzie presja na obniżkę cen gazu i węgla na rynkach regionalnych oraz ropy naftowej na rynkach globalnych.
EN
The shale gas and oil revolution has unexpectedly and forcefully begun to change the energy landscape in the United States. It is expected to spread beyond the US, with far reaching implications for the global energy map, but also for the macro-economy and politics of many countries. The purpose of this paper is to bring a better understanding to what prompted the revolution, to assess the production methods and associated environmental concerns, to speculate what can reasonably be expected in coming decades, and to sketch the full impact of a ripening shale revolution on the emerging economic and political policy choices for energy exporting and importing countries.We find that a large scale expansion can be expected in US shale gas and oil activities in the coming two decades. Globally, the shale leaders are likely to be countries that are already significant gas and oil producers. Setting up a policy framework to allow and promote shale development in a safe manner is a necessity for the launch of shale exploitation. The most important implication of a successful shale revolution would arguably be a downward pressure on gas and coal prices in regional markets and on the global oil price.
10
Content available remote Rodzaje niekonwencjonalnych złóż ropy naftowej i ich charakterystyka
EN
The classification of unconventional oil deposits on the heavy oil deposits, the deposits of tar sands and deposits of oil trapped in the structures of rock (shale oil and tight oil) is presented in the paper. The characteristics and location of each type of unconventional oil deposit is shown in different geographic regions, with the ratings of their resources given. The occurrence of unconventional oil deposits is also described with emphasis on the countries possessing the greatest resources. The importance of huge resources for the world’s oil market has been highlighted.
PL
W artykule przedstawiono podział niekonwencjonalnych złóż ropy naftowej na złoża ciężkiej ropy (heavy oil), złoża piasków bitumicznych (tar sand) oraz złoża ropy naftowej uwięzione w strukturach skalnych (shale oil i thight oil) oraz zamieszczono ich charakterystykę. Ponadto podano rozmieszczenie niekonwencjonalnych złóż ropy naftowej, w podziale na ich rodzaje na świecie w poszczególnych regionach geograficznych z podaniem ocen ich zasobów. Opisano również występowanie niekonwencjonalnych złóż ropy naftowej, z podziałem na ich kategorie, w państwach posiadających największe ich zasoby. Podkreślono jak wielkie znaczenie, dla rynku ropy naftowej na świecie, mają ogromne zasoby niekonwencjonalnych złóż ropy naftowej.
EN
This paper provides a basic introduction to workflows for shale oil/gas exploration risk and resource assessments. It starts with definitions of conventional and unconventional petroleum systems and brief descriptions of several North American unconventional plays. The core of the paper is a short description of workflows based on industry-standard Petrel and PetroMod software tools which enable rapid, auditable and geology based assessments of petroleum resources. The main steps of the iterative Exploration Risk Assessment workflow and its extension to include Petroleum Resource Assessments are described. The successful utilization these workflows is illustrated using a 3D Petrole
EN
In Poland, the focus so far has been on unconventional gas deposits, but equally interesting are unconventional oil deposits. As a result of intensive research in the past few years, it was found that we have significant deposits of oil shale, which may be rich in both gas and oil. Undoubtedly, after a period of research and analysis on the prospects of the presence of shale gas in these structural units would come the turn of the shale oil. In the article on the basis of industrial materials have been characterized: — shale formations in the basin of the Baltic - Podlasie - Lublin (potential of the Silurian and Ordovician), — Prągowiec ravine (southeast of Kielce) - Graptolitic Shales (Silurian) — menilite shales in the Carpathians external-especially of south of Rzeszów in municipalities Błażowa, Boguchwała, Wojaszówka. — discovered heavy oil deposit Lubaczów
EN
This paper describes a regional overview of selected Central and Eastern European sedimentary basins which hold the unconventional potential for shale gas and shale oil exploration that have attracted interest in the last few years. Organic-rich fine-grained rocks like black and dark-grey shales, mudstones and claystones with varying ages from Cambrian to Miocene are distributed very irregularly across Europe. A long- -lasting, dynamic geological evolution and continuous reconstruction of the European continent resulted in the formation of many sedimentary basins. In some basins, biogeochemical conditions favoured preservation of accumulated organic-rich deposits and led to the generation of hydrocarbons after burial and reaching appropriate maturity levels. Even though shale gas and shale oil exploration in Europe is still in its infancy, shale formations were analyzed before as the source rocks in conventional petroleum systems. Parameters that were used to describe source rocks e.g.: total organic carbon, maturity, thickness, depth of occurrence and areal extent, can indicate preliminary potential for shale gas exploration and allow estimating first resource values. Currently the most intense shale gas exploration takes place in Poland where over 42 wells have been drilled and over 100 concessions for unconventional hydrocarbon exploration have been granted. Upper Ordovician and Lower Silurian shales at the East European Craton (Baltic and Lublin-Podlasie Basins) are the major targets for unconventional exploration in Poland. In Central and Eastern Europe, evaluation of the unconventional potential of gas-bearing shale formations is carried out also in Ukraine, Lithuania, Austria, Czech Republic, Hungary, Romania, Bulgaria, Moldavia and the European sector of Turkey. Despite the fact that each shale rock differs from another by geochemical, petrographical, petrophysical, mechanical and other parameters, some similarities can be seen such as marine type of depositional environment with the predominance of type II kerogen or specific organic matter content. Recoverable resources of shale gas throughout Europe are believed to be as large as 17.6 bln m3 and Poland, Ukraine, France with United Kingdom are thought to have the greatest resources.
EN
This paper describes a regional overview of selected Central and Eastern European sedimentary basins which hold the unconventional potential for shale gas and shale oil exploration that have attracted interest in the last few years. Organic-rich fine-grained rocks like black and dark-grey shales, mudstones and claystones with varying ages from Cambrian to Miocene are distributed very irregularly across Europe. A long- -lasting, dynamic geological evolution and continuous reconstruction of the European continent resulted in the formation of many sedimentary basins. In some basins, biogeochemical conditions favoured preservation of accumulated organic-rich deposits and led to the generation of hydrocarbons after burial and reaching appropriate maturity levels. Even though shale gas and shale oil exploration in Europe is still in its infancy, shale formations were analyzed before as the source rocks in conventional petroleum systems. Parameters that were used to describe source rocks e.g.: total organic carbon, maturity, thickness, depth of occurrence and areal extent, can indicate preliminary potential for shale gas exploration and allow estimating first resource values. Currently the most intense shale gas exploration takes place in Poland where over 42 wells have been drilled and over 100 concessions for unconventional hydrocarbon exploration have been granted. Upper Ordovician and lower Silurian shales at the East European Craton (Baltic, Lublin and Podlasie basins) are the major targets for unconventional exploration in Poland. In Central and Eastern Europe, evaluation of the unconventional potential of gas-bearing shale formations is carried out also in Ukraine, Lithuania, Austria, Czech Republic, Hungary, Romania, Bulgaria, Moldova and the European sector of Turkey. Despite the fact that each shale rock differs from another by geochemical, petrographical, petrophysical, mechanical and other parameters, some similarities can be seen such as marine type of depositional environment with the predominance of type II kerogen or specific organic matter content. Recoverable resources of shale gas throughout Europe are believed to be as large as 17.67 trillion m3 (624 Tcf) and Poland, Ukraine, France with United Kingdom are thought to have the greatest resources.
PL
W ostatnich latach prowadzone są w Polsce prace związane z poszukiwaniem gazu w formacjach łupkowych (shale gas), natomiast tematyka shale oil nie była do tej pory przedmiotem większego zainteresowania od strony oceny możliwości akumulacyjnych i eksploatacyjnych. Prace dotyczące shale oil są kontynuacją i nawiązaniem do badań związanych z poszukiwaniem shale gas. Jest to kolejny krok zmierzający do szerszego rozpoznania systemów naftowych, uwzględniających kombinację elementów naftowych różniących się charakterystyką ośrodka skalnego. Tematyka shale oil często odnosi się do już rozpoznanych złóż węglowodorów, w przypadku których możliwości całkowitego pozyskania do niedawna wydawały się ograniczone. Pełne wykorzystanie złóż typu shale oil oraz shale gas pozwoliłoby zdywersyfikować źródła energii w Polsce. W niniejszym artykule zostały przedstawione ogólne zagadnienia dotyczące istoty niekonwencjonalnych systemów shale oil oraz omówiono metody badawcze niezbędne przy pracach służących do szacowania zasobów i możliwości ich występowania z uwagi na typ i stopień dojrzałości substancji organicznej. Zainteresowanie systemami naftowymi w sensie shale oil nie ogranicza się tylko do utworów paleozoicznych syluru i ordowiku (tak jak w przypadku shale gas), ale powinno obejmować także utwory młodsze, które mogą mieć znaczący potencjał produkcji w tego typu systemach naftowych.
EN
In recent years work related to shale gas exploration are being conducted in Poland. However, shale oil has not yet been the subject of much interest. Work on shale oil are a continuation of those associated with the search for shale gas. This is another step towards a wider diagnosis of petroleum systems. The shale oil issue refers often to the already identified hydrocarbon reserves, of which total acquisition, until now, seemed to be limited. Full exploitation of shale oil and shale gas deposits would diversify energy sources in Poland. This article provides general is-sues concerning the nature of shale oil unconventional systems and discusses the research methods (for the estimation of hydrocarbons resources and the possibility of their exploitation). Interest in shale oil petroleum systems should not be limited to Paleozoic formations (Silurian and Ordovician shale gas plays), but should also include younger formations, that may have significant production potential in petroleum systems of this type.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.