Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rurka ciepła
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Wraz z rozwojem technologii urządzeń elektronicznych oraz ich rniniaturyzacji rośnie potrzeba efektywniejszego zarządzania generowanym ciepłem, a dokładnie układem jego odprowadzania. Jest to spowodowane głównie wzrostem mocy elektrycznej i w konsekwencji większymi przyrostami temperatur, które w krytycznej sytuacji mogą spowodować uszkodzenie urządzeń. Aby skutecznie zabezpieczyć urządzenia elektroniczne w nowoczesnych rozwiązaniach technicznych stosuje się układy odbioru ciepła. Powszechnie stosowane układy pasywnego odbioru ciepła oparte na wysokich współczynnikach przewodności cieplnej metali tj. radiatory, czeęsto wymagają znacznych powierzchni wymiany ciepła np. radiatorów. Wartość współczynnika przejmowania ciepła dla tego typu mzwiązania może dochodzić do 150 W/cm2K. Metody tzw. aktywnego odbioru ciepła polegają na zastosowaniu zewnętrznego układu, którego przykładem jest powszechnie znane ogniwo Peltiera.W artykule skupiono się na jednej z najbardziej efektywnych technik odbioru ciepła z powierzchni charakteryzujących się dużym strumieniem ciepła, którymi są tzw. rurki ciepła (ang. ,,heat pipes"), jest to pasywny sposób odbioru ciepła polegający na transporcie ciepła z obszaru charakteryzującego się wysoką wartością temperatur do obszaru o niższej temperaturze. Pasywne urządzenie oznacza, że do jego działania nie jest p-trzebna np. pompa obiegowa czy dodatkowe zasilanie, co upraszcza konstrukcję oraz minimalizuje koszty eksploatacyjne. Różnice ciśnień powstałe na skutek odparowania i skroplenia czynnika roboczego w odpowiednich sekcjach urządzenia jest motorem powodującym transport ciepła, zaś kluczem do uzyskania najwyższej efektywności są rozwiązania technologiczne tj. wykorzystywanie efektu grawitacji w termosyfonach, cićnienia kapilarnego w strukturze porowatej czy zjawisko przepływu dwufazowego w oscylacyjnych rurkach ciepła. Niniejsza praca jest analizą sposobu działania, wariantów konstrukcji oraz obszaru zastosowania rurek ciepła.
EN
With the development of electronic technology devices and their miniaturization, the need for efficient management of the generated heat is growing and specifically it's removal system. This is mainly due to the increase in electric power, and thus larger increments of temperatures, which in a critical situation may cause damage the equipment. To effectively protect electronic devices in modern technical solutions the heat removal systems can be applied. Commonly used systems, passive heat removal based on high coefficients of thermal conductivity of metals i.e. heat sinks, often require large heat exchange surfaces for example radiators. The values of heat transfer coefficient for this type of solution can be up to 150 W/cm2K. So-called active heat removal methods, involve the use of an external system where the example is a Peltier. The paper focuses on the one of the most effective techniques for receiving high amount of heat flux from the surface which are heat pipes. This is a passive method for transferring heat from an area characterized by a high value of the temperature to the lower temperature region. Passive device means that its operation not required e.g. the circulation pump or additional power supply which simplifies design and reduces operating costs. Pressure differences caused by evaporation and condensation of the working medium in the relevant sections of the device is the engine that causes heat transfer, and the key to achieve the highest efficiency are technological solutions ie. use of the effect of gravity in thermosiphons, capillary pressure in the porous structure or phenomenon two-phase flow in oscillating heat pipes. This work is an analysis of the mode of action, design variants and the area of application for heat pipe.
PL
W celu wyznaczenia optymalnej wartości średnicy wewnętrznej rurki skraplacza typu church window zastosowano minimalizację przyrostu entropii. W przyjętym modelu uwzględniono przyrost entropii w wyniku przepływu ciepła i oporów przepływu od strony wody chłodzącej. Obliczenia przeprowadzono dla dwóch zależności na współczynnik oporów przepływu z uwzględnieniem czterech różnych wartości chropowatości rurki skraplacza. Z przeprowadzonej analizy uzyskano nieco mniejszą wartość wewnętrznej średnicy rurki od rzeczywistej. Rzeczywista średnica wewnętrzna rurki skraplacza wynosi 22 mm. Z przeprowadzonej analizy otrzymano optymalną wartość wewnętrznej średnicy rurki równą 20 mm. Wartość optymalnej średnicy zależy od przyjętej wartości chropowatości i wraz ze wzrostem chropowatości rośnie wartość optymalnej średnicy.
EN
Inner diam. of the “church window” condenser tube was optimized by minimization entropy generation during heat transfer. The pressure drop on the cooling water side was taken into account. Calcns. were performed for 2 relations of flow resistance and for 4 different values of the condenser tube roughness. The anal. gave a slightly lower inner diam. of the tube (20 mm) than the actual value (22 mm). The optimum diam. increased with increasing the tube surface roughness.
3
Content available remote Zastosowanie rurek ciepła w budownictwie
PL
W artykule omówiono zastosowanie rurek ciepła w budownictwie, np. systemie przeciw oblodzeniowym obiektów mostowych, stabilizacji temperatury gruntu, osuszania i ochładzania powietrza itp. Zaprezentowano wyniki badań dwóch rurek ciepła o różnej średnicy zewnętrznej i długości (20 mm x 1,77 m oraz 22 mm x 0,55 m). Pojedynczą rurkę ciepła omywano wodą ciepłą w części parownika oraz wodą zimną w części skraplacza. Przeprowadzone badania pozwoliły na wybranie efektywniejszej rurki ciepła. Na podstawie badań doświadczalnych stwierdzono, że rurka ciepła o długości 0,55 m wypełniona czynnikiem R404A jest najefektywniejsza z przebadanych rurek ciepła. Można ją wykorzystać do budowy wymiennika ciepła.
EN
This article discusses heat pipes application in construction for example bridges de-icing system, ground temperature stabilization, air cooling and dehumidification etc. Experimental research results are also presented for two heat pipes of different outer diameters and lengths (20 mm x 1,77 m and 22 mm x 0,55 m). Single heat pipe was heated by hot water stream at evaporator section and cooled by cold water stream at condenser section. Experiments allowed to choose more efficient heat pipe. It was found that the heat pipe with a length of 0.55 m and filled with refrigerant R404A is the most effective one. It can be used to build heat exchanger consisting battery of this type of tubes.
PL
Głównym powodem bardzo wolnego upowszechniania pojazdów napędem elektrycznym są ograniczone możliwości magazynowania energii. Dostępne na rynku baterie mają stosunkowo małą pojemność, są ciężkie i wymagają długiego czasu ładowania. Zakumulowana energia elektryczna jest również wykorzystywana we wszystkich innych układach samochodu, w tym stanowiących o komforcie użytkowania. Konsumowana przez nie energia jest znaczna i powoduje ograniczenie zasięgu pojazdu. Dotyczy to szczególnie układów wentylacyjnych i klimatyzacyjnych. W niniejszej pracy omówiono możliwości i zalety rekuperacji powietrza. Przeprowadzenie takiego procesu wymaga wysokosprawnych rekuperatorów o kompaktowych wymiarach. Najbardziej wydajne są takie, w których zastosowano układy ożebrowanych rurek ciepła. Podano metodykę obliczeń projektowych. Na przykładzie powierzchni gładkiej i z nałożoną pojedynczą warstwą miedzianej siatki podano współczynniki przejmowania ciepła przy różnym przegrzaniu dla czynnika chłodniczego FC-72.
EN
The main reason for a very slow dissemination of electric vehicles are limited possibilities for energy storage. Commercially available batteries have a relatively small capacity, are heavy and require a long charging time. Accumulated electricity is also used in all other vehicle systems, including representing the comfort of use. Energy consumed by them is significant and reduces the range of the vehicle. This is particularly the ventilation and air conditioning systems. In this paper, the possibilities and advantages of air recuperation is discussed. Carrying out such a process requires compact high-heat recovery units. The most effective are those that use integrated finned heat pipes. Detailed methodology of design for such heat exchangers is presented. An example of heat transfer coefficients are given at different overheat of the refrigerant FC-72. The given examples are for the smooth surface and with imposed a single copper mesh layer.
EN
The paper is devoted to the applications possibilities of heat pipe in heat recovery installations. It was presented selection of optimal working fluid which can work at wide range of temperature, showed the threats arising with used flammable, toxic and harmful to the environment substances. In the paper showed the possibilities of use a new generation of environmental friendly fluids. At the end the article shows the structure and principle of operation a test right which will be use to research at effectiveness of heat pipe work with some selected fluids.
PL
Artykuł poświęcony jest możliwością aplikacyjnym rurki ciepła w instalacjach odzysku ciepła. Zaprezentowano dobór optymalnego czynnika roboczego mającego pracować w szerokim zakresie temperatur roboczych. Scharakteryzowano zagrożenia wynikające z wykorzystywania substancji łatwopalnych i toksycznych oraz szkodliwych dla środowiska naturalnego. Pokazano możliwości jakie niesie ze sobą pojawienie się nowych proekologicznych substancji roboczych, dedykowanych aplikacjom energetycznym. Przedstawiono budowę oraz zasadę działania układu pomiarowego mającego służyć badaniom efektywności rurki ciepła pracującej z różnymi czynnikami roboczymi.
6
Content available remote Nowoczesne metody usuwania śniegu i lodu z powierzchni użytkowych
PL
W artykule zostały przedstawione klasyczne metody usuwania śniegu i lodu z nawierzchni użytkowych. Dokonano analizy skutków wykorzystywania środków chemicznych. Opisano szacunkowe koszty wynikające z konieczności utrzymania nawierzchni użytkowych „niszczonych” wskutek zmian temperatury i wykorzystania środków chemicznych. Przedstawiono nowoczesne metody odmrażania z zastosowaniem systemów podgrzewania elektrycznego i układów wykorzystujących odnawialne źródła energii. W artykule położono nacisk na rozszerzenie informacji dotyczących stosowania i technologii pasywnych układów odladzania z wykorzystywaniem rurek ciepła i układów termosyfonowych. Zaprezentowano budowę stanowiska pomiarowego i zaawansowanie prac badawczych w kierunku opracowania wysokoefektywnego układu odladzania/odśnieżania powierzchni wykorzystującego rurkę ciepła (termosyfon).
EN
The paper has showed some classical method of defrosting/ demelting and snow removed from surfaces. Authors have analyzed effects of using chemicals, they described average costs maintenance of public roads, pavements which have destroyed by temperature differences and de-icing agents. The paper presented some new defrosting/demelting methods based on use of electrical heating and renewable energy sources. Author’s expanded information about capability application of systems based on use the passive heat elements such as heat pipes and thermosyphons. At the end of the text was showed a new test right. It has constructed for experimental investigations carried to created more efficiency passive elements for demelelting and defrosting surface in the time of winter.
PL
Rurki ciepła mogą posłużyć jako elementy chłodzące pieców do obróbki cieplnej metali, np. w procesach wyżarzania i odpuszczania. Użycie rurek ciepła zapewnia niemal stałą temperaturę na ich powierzchni, gwarantującą równomierny rozkład temperatury w piecu. Umożliwia to sprawne „przeniesienie” strumienia ciepła na znaczne odległości, np. do instalacji odzysku ciepła odpadowego. Jednym z najprostszych konstrukcyjnie rodzajów rurki ciepła jest termosyfon, w którym zachodzi grawitacyjny spływ skroplin. Zaprojektowanie takiego układu wymaga obliczenia strumienia ciepła przenoszonego przez termosyfon oraz jego temperatury w różnych warunkach pracy. W pracy jest przedstawiony uproszczony model przepływu płynu z wymianą ciepła zaimplementowany w programie ANSYS FLUENT za pomocą funkcji użytkownika (UDF). Modelowana jest konwekcja na zewnątrz rurki, przewodzenie przez ściankę i przepływ pary (z pominięciem spływu cieczy) w środku termosyfonu. Przepływ pary jest Z założenia laminarny (małe strumienie masy), rozwiązywany różnymi algorytmami, takimi jak Solver sprzężony (Coupled) i Solvery segregowane (PISO, SIMPLE). Tak uproszczony model pozwala na wystarczająco dokładne obliczenie pola temperatury przy jednoczesnym krótkim (w porównaniu z modelem dwufazowym) czasem obliczeń. Wyniki symulacji porównane są z danymi eksperymentalnymi pochodzącymi z doświadczeń i dostępnej literatury.
EN
Heat pipes can be used as cooling elements of metals heat treatment furnance, for example in processes of annealing and tempering. Use ofheat pipes ensures almost constant temperature of their surface guaranteeing uniform temperature distribution in the oven and allows efficient heat flux “transport” on considerable distances, for example to waste heat recuperation installation. Thermosyphon is one of the simplest construction type of heat pipe, with gravitational condensate return. Designing of such system requaires calculation of heat fiux throughput and thermosyphon temperature in various working conditions. In present paper simplified model of fluid flow with heat exchange is used, simulated by ANSYS FLUENT code with User Defined Functions (UDF). Processes included in numerical computation are: heat convection outside of the thermosyphon, conduction through the solid wall and vapor flow inside thermosyphon (liquid return considered negligible). There is an assumption of laminar vapor flow (low mass fiuxes), solved with different algorithms, like Coupled and Segregated Solvers (PISO, SIMPLE). The simplified model enables accurate numerical solution of temperature field in relatively short time (comparing to two-pase model). Obtained results are compared with experimental data from literature and own mesurements.
PL
W referacie zaprezentowano wybrane nowoczesne i przyszłościowe technologie zgazowania biomasy na potrzeby zintegrowanych układów energetycznych. Wzrost zainteresowania odnawialnymi źródłami energii oraz fakt, że wiele potencjalnych zastosowań wymaga wysokiej jakości gazu przyczyniają się do rozwoju istniejących oraz powstawania nowych koncepcji technologii zgazowania biomasy. Zastosowanie w energetyce procesu zgazowania biomasy daje możliwość budowy alternatywnych układów energetycznych opartych o turbiny gazowe, silniki Stirlinga czy ogniwa paliwowe. Przedstawione w tej pracy zostały takie technologie jak: zgazowanie plazmowe, zgazowanie solarne, zgazowanie allotermiczne z wykorzystaniem rur ciepła.
EN
This paper provides a review of recent and future technologies of biomass gasification for integrated power systems. The widely recognised importance of renewable energy sources and the need for using high quality gas in most potential applications has added impetus for the creation and development of advanced biomass gasification processes. Using biomass gasification processes in power engineering is allowing the possibility to build an alternative energy systems based on gas turbines, Stirling engines or fuel cells. The technologies described in this paper are plasma gasification, solar gasification and a gasification system with heatpipes.
PL
Rurki ciepła ze względu na swoją wysoką efektywność, trwałość i możliwość pracy w szerokim zakresie temperatur znalazły zastosowanie w wielu gałęziach przemysłu, począwszy od chłodnictwa i klimatyzacji (w przemyśle spożyw- czym, w przechowywaniu żywności, w wymiennikach klimatyzacyjnych), poprzez przemysł chemiczny i metalurgiczny, aż po przemysł elektroniczny (chłodzenie urządzeń elektronicznych). Rurki ciepła z powodzeniem wykorzystywane są również w technologiach kosmicznych (chłodzenie silników i elektroniki statków kosmicznych i satelitów kosmicznych), kriochirurgii, w chłodzeniu cylindrów silników oraz łopatek turbin, w elementach kolektorów słonecznych, w instalacjach zabezpieczających przed pokryciem lodem i śniegiem dróg przejazdowych, oraz do utrzymywania odpowiednio niskiej temperatury gruntu na terenach wiecznej zmarzliny zabezpieczając przed zniszczeniem znajdującą się tam infrastrukturę (np. rurociąg Trans-Alaska).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.