Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  quantum information
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiam za co i dlaczego John F. Clauser, Alain Aspect i Anton Zeilinger otrzymali Nagrodę Nobla 2022 (równo 100 lat po wręczeniu tejże nagrody Einsteinowi i Bohrowi), a także koncentruję się nad istotą prowadzonych przeze mnie badań, które wiążą się ze wspomnianą nagrodą. Tekst jest napisany dwutorowo. Czytelnik, szacując swój poziom wiedzy z fizyki kwantowej, może go czytać przeskakując pomiędzy tekstem głównym, a fragmentami z kropką (●) głębiej wyjaśniającymi pewne aspekty, ale można też przeczytać tylko tekst główny. Jako autor wolałbym, aby artykuł zainteresował nauczycieli i studentów, a może nawet licealistów, niż profesorów doktorów habilitowanych, choć i ci nie omijając fragmentów z kropką, mam nadzieję, mogą się czegoś ciekawego dowiedzieć.
EN
In the paper I describe why and for what achievements John F. Clauser, Alain Aspect and Anton Zeilinger received the Nobel Prize in 2022 (exactly 100 years after the prize had been awarded to Einstein and Bohr), as well as my own research related to the prize. The text is written in a twofold way. Based on familiarity with quantum physics the reader can switch between the main narrative and the parts marked with bullets (•) explaining some aspects in more detail, but one can restrict attention to the main text only. As the author, I would prefer that the paper be of interest to teachers, students, and possibly also high-school students rather than professors, although even they can learn something interesting, also from the parts marked with a bullet.
PL
Kubit fizyczny, na potrzeby niniejszych rozważań, można zdefiniować jako izolowany obiekt kwantowy o dwóch statystycznie superponowanych stanach kwantowych, który posiada potencjał aplikacyjny (funkcjonalny) jako kubit logiczny. Czas koherencji kubitu fizycznego (czas życia, czas istnienia w stanie superpozycji) musi być odpowiednio długi, aby umożliwić zastosowania praktyczne. Czas życia kubitu w stanie koherencji jest określony przez procesy dekoherencji środowiskowej. Kubit (logiczny) w obszarze kwantowej teorii informacji jest elementarną jednostką informacji kwantowej, analogiem do skalarnego bitu. W odróżnieniu od unormowanej skalarnej wartości bitu 0 lub 1, kubit jest wektorem unormowanym (ale nie w dwuwymiarowej przestrzeni Euklidesa) w dwuwymiarowej przestrzeni Hilberta o bazie ortonormalnej {|0>, |1>}, q=α|0>+β|1>, gdzie α, β są unormowanymi |α²|+|β²|=1 liczbami zespolonymi i statystycznymi amplitudami stanów kwantowych. W notacji Diraca |0>=[1,0], |1>=[0,1]. Pomiar powoduje kolaps koherentnego stanu kwantowego będącego statystyczną superpozycją stanów składowych do stanu dyskretnego z prawdopodobieństwami |α²| dla stanu |0>, i |β²| dla stanu |1>. Tak zdefiniowany logicznie kubit musi być wykonany fizycznie na realizowalnych, stabilnych, dwupoziomowych obiektach kwantowych. Jako kubity fizyczne stosuje się np. cząstki o spinie ½, elektron, polaryzację pojedynczego fotonu, izolowane pojedyncze atomy neutralne i jony, ale także kubity syntetyczne jak kolorowe centra wakancyjne w kryształach, kropki kwantowe, oraz emergencje kwantowe jak kwazicząstki i kwantowe pobudzenia kolektywne np. plazmoniczne.
EN
The physical qubit, for the purposes of these considerations, can be defined as an isolated quantum object with two statistically superposed quantum states, which has an application (functional) potential as a logical qubit. The coherence time of the physical qubit (lifetime, lifetime in superposition) must be long enough to allow for practical applications. The lifetime of a qubit in a coherence state is determined by the processes of environmental decoherence. The (logical) qubit in the field of quantum information theory is an elementary unit of quantum information, analogous to a scalar bit. Unlike a normalized scalar bit value of 0 or 1, a qubit is a normed vector (but not in a two-dimensional Euclid space), in a two-dimensional Hilbert space with an orthonormal basis {|0>,|1>}, q = α | 0> + β | 1>, where α, β are normalized |α²|+|β²|=1 complex numbers and statistical amplitudes of quantum states. In Dirac notation, |0>=[1,0], |1>=[0,1]. The measurement causes a collapse of a coherent quantum state which is a statistical superposition of the component states to the discrete state with the probabilities |α²| for the state |0>, and |β²| for state |1>. Such a logically defined qubit must be physically realized on stable, two-level quantum objects. Physical qubits are e.g. spin ½ particles, electrons, single photon polarization, isolated neutral atoms, and ions, but also synthetic qubits such as coloured vacancy centres in crystals, quantum dots, and quantum emergencies such as quasiparticles and quantum collective stimulations, e.g. plasmonic.
PL
Informacja kwantowa, której jednostką elementarną jest kubit, jest zawarta w skwantowanym, dyskretnym stanie układu kwantowego. Od informacji klasycznej odróżnia ją charakter probabilistyczny oraz możliwość zakodowania w nielokalnych związkach pomiędzy układami kwantowymi. Kwantowe związki nielokalne, będące powszechną właściwością wszechświata, nazywamy stanami splątanymi. Układ kwantowy jest obiektem podlegającym mechanice kwantowej i jest ograniczony rozmiarowo do skali atomowej. Kubit jest dowolną superpozycją dwóch stanów kwantowych oznaczanych jako |0> i |1>. Odczytując wartość kubitu uzyskuje się z pewnym prawdopodobieństwem wartość 0 lub 1. Nie można przewidzieć która wartość zostanie odczytana. Stan układu kwantowego jest nietrwały, ograniczony przez czas dekoherencji. Czas ten, zdeterminowany szumem i właściwościami układu odczytu, ogranicza skalowalność technologii kwantowych. Kubitem są np. elektron i jego dwuwartościowy spin, foton i jego dwuwartościowy stan polaryzacji, jon z odpowiednio wybranymi dwoma poziomami energetycznymi, ale też molekuły posiadające spin, oscylatory kwantowe czy kwazicząstki. Rejestr kwantowy jest uporządkowanym układem kubitów. Z kubitów i ich układów buduje się logiczne bramki kwantowe. Z kubitów, bramek kwantowych i układów kontrolno- sterujących buduje się systemy kwantowe: komputery, zegary, czujniki, systemy pomiarowe, urządzenia, grawimetry, akcelerometry i wiele innych. Do kontroli kubitów potrzeba jest zaawansowana fotonika, ultrastabilne przestrajalne lasery jednoczęstotliwościowe oraz zaawansowana, najlepiej standaryzowana elektronika.
EN
Quantum information, the unit of which is a qubit, is contained in a quantized, discrete state of a quantum system. What distinguishes it from classical information is its probabilistic nature and the possibility of coding it in non-local relationships between quantum systems. Quantum nonlocal relationships, a common feature of the universe, are called entangled states. A quantum system is an object subject to quantum mechanics and is limited in size to the atomic scale. A qubit is an arbitrary superposition of two quantum states marked as |0> and |1>. When you read the value of a qubit, you get a value of 0 or 1 with some probability. You cannot predict which value will be read. The state of the quantum system is unstable, limited by the time of decoherence. This time, determined by noise and properties of the readout system, limits the scalability of quantum technologies. The qubit is an electron and its bivalent spin, a photon and its bivalent polarization state, an ion with two suitably selected energy levels, but also molecules with spin, quantum oscillators or quasiparticles. A quantum register is an ordered system of qubits. Logical quantum gates are built from qubits and their systems. Quantum systems are built from qubits, quantum gates and measurement and control systems: computers, clocks, sensors, measuring systems, devices, gravimeters, accelerometers, and many others. To control qubits, you need advanced photonics, ultra-stable tuneable single-frequency lasers, and advanced, preferably standardized electronics.
EN
Most systems used in quantum physics experiments require the efficient and simultaneous recording different multi-photon coincidence detection events. In such experiments, the single-photon gated counting systems can be applicable. The main sources of errors in these systems are both instability of the clock source and their imperfect synchronization with the excitation source. Below, we propose a solution for improvement of the metrological parameters of such measuring systems. Thus, we designed a novel integrated circuit dedicated to registration of signals from a photon number resolving detectors including a phase synchronizer module. This paper presents the architecture of a high-resolution (~60 ps) digital phase synchronizer module cooperating with a multi-channel coincidence counter. The main characteristic feature of the presented system is its ability to fast synchronization (requiring only one clock period) with the measuring process. Therefore, it is designed to work with various excitation sources of a very wide frequency range. Implementation of the phase synchronizer module in an FPGA device enabled to reduce the synchronization error value from 2.857 ns to 214.8 ps.
EN
Quantum cryptography, a field of science that had not been known before, developed rapidly in the late 20th century. It originated from a combination of quantum mechanics and information technology. The present paper presents the possibilities of using quantum mechanics in cryptography and considers whether there are any practical solutions to the important class of problems regarding the security of transmitted information.
PL
Pod koniec XX - go wieku nastąpił gwałtowny rozwój nieznanej dotąd dziedziny - kryptografii kwantowej. Dziedzina ta wywodzi się ze splotu mechaniki kwantowej i informatyki. W niniejszym opracowaniu przedstawimy możliwości wykorzystania mechaniki kwantowej w kryptografii oraz zastanowimy się czy wynikają z nich praktyczne rozwiązywania dla istotnej klasy problemów związanych z bezpieczeństwem przesyłanej informacji.
EN
We present the basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave providing library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for higl-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices implemented in quantum-octave.
PL
W artykule przedstawiony jest kompilator proceduralnego języka Quantum Computation Language do języka sekwencyjnego Quantum Markup Lan-guage. Wadą języka QML jest jego słaba skalowalność. Wykorzystanie wysokopozio-mowego języka QCL rozwiązuje ten problem poprzez wprowadzenie elementów proceduralnego paradygmatu programowania. Umożliwia to wielokrotne wykorzystanie kodu do podobnych problemów o różnych rozmiarach.
EN
Article presents compiler which takes code written in procedural Quantum Computation Language as the input and produces sequential Quantum Markup Language code. The disadvantage of QML language is its Iow scalability. Usage of high-level language such as QCL solves this problem by introducing elements of procedural programming paradigm. It allows code reusability to solve similar problems of different size.
EN
In this paper we make a short overview of current state of the art in the field of quantum computing. The basic issues of classical physics, probabilistic system, quantum mechanics and quantum information are included. As an example the Grover's Search Algorithm is presented.
EN
A quantum information transfer protocol in bipartite systems consisting of biphotons from parametric down-conversion without classical channel is shown to be a readily feasible modification of performed correlation experiments.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.