Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 69

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  passive safety
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
This paper presents a simulation method for testing the energy absorbed by the absorption systems of rail vehicles equipped with a soft absorber. The method makes it possible to verify the actual behavior of the absorption system during the impact of two vehicles. The first part of this paper describes the structural elements of a railway vehicle performing the function of an energy absorber during an impact according to the EN 15227 standard. A soft absorber, the so-called honeycomb, is analyzed in detail. It is a multicellular structure often used in rail vehicles due to its properties of controlled deformation. The literature review describes the research conducted on this element. The analytical part of this paper describes a general mathematical model of a rail vehicle collision according to Scenario 1, in which the collided vehicles are of the same type, and Scenario 2 for vehicles of different types. A computational impact simulation for the two scenarios has been carried out using the specialist software Mathcad, and the results are presented in graphs. The paper ends with conclusions presenting the application possibilities of the developed tool.
PL
Celem pracy jest omówienie problematyki bezpieczeństwa (biernego) pasywnego w pojazdach kolejowych, w tym przede wszystkim przedstawienie aktualnych rozwiązań elementów absorbujących energię zderzenia. W kolejnych punktach wskazano podstawowe funkcje pełnione przez systemy bezpieczeństwa pasywnego oraz omówiono źródło obowiązujących przepisów. Wymieniono scenariusze zderzeniowe oraz omówiono podstawowe kryteria oceny konstrukcji pojazdu. Ostatecznie przedstawiono wybrane rozwiązania układów bezpieczeństwa biernego stosowane wybranych typach lokomotyw oraz zespołów trakcyjnych.
EN
The aim of the article is to discuss the issues of passive safety in railway vehicles. Current design of the elements absorbing collision energy is presented. Basic functions performed by passive safety systems are indicated and the source of the applicable regulations is discussed. Crash scenarios are listed and the basic criteria for vehicle structure assessment are discussed. Some solutions of passive safety systems used in selected types of locomotives and multiple units are presented.
3
Content available remote Passive safety in sports cars – safety cells
EN
The safety cell (depending on its producer also referred to as safety cage, roll cage or crash box) is an indispensable sports car element tasked with limiting results of a potential car crash. The aforesaid structure should be characterised by the highest possible and repeatable workmanship, providing strength assumed at the design stage. The collaboration of the Łukasiewicz Research Network – Upper Silesian Institute of Technology, Welding Research Centre and of the Polish Automobile and Motorcycle Federation (i.e. the institution supervising motor racing in Poland) enabled the implementation of the Certification Procedure for Safety Cages in accordance with the Homologation Regulations for Safety Cages of Federation Internationale de l’Automobile. The article discusses conclusions concerning tests performed within the Certification Procedure for Safety Cages, rescue aspects concerning the safety cell design and further research trends.
PL
Klatki bezpieczeństwa są niezbędnym wyposażeniem samochodu sportowego, których zadaniem jest ograniczenie skutków potencjalnego wypadku. Konstrukcje te powinny zapewniać możliwie najwyższy oraz powtarzalny poziom wykonania, aby ich wytrzymałość była taka, jak założono na etapie projektowania. Dzięki współpracy Sieci Badawczej Łukasiewicz − Instytutu Spawalnictwa z Polskim Związkiem Motorowym − instytucją nadzorującą sport samochodowy w kraju − możliwe było wprowadzenie Procedury Certyfikacji Klatek Bezpieczeństwa zgodnie z Regulaminem Homologacji Klatek Bezpieczeństwa Federation Internationale de l'Automobile. Niniejszy artykuł opisuje dotychczasowe wnioski dotyczące badań przeprowadzonych w ramach Procedury Certyfikacji Klatek Bezpieczeństwa. Omówiono również aspekt ratowniczy, odnoszący się do konstrukcji klatek bezpieczeństwa, oraz określono dalsze kierunki badań.
PL
Polityka ekologiczna nakłada na poszczególne państwa członkowskie UE wymagania dotyczące bezemisyjnego transportu. W tym zakresie podjęto działania związane z opracowaniem nowego pojazdu dostawczego o dmc do 3,5 t. Pomysł został zrealizowany z wykorzystaniem środków NCBiR – projekt nr POIR.01.02.00-00-0194/16 – w ramach programu sektorowego INNOMOTO. Realizacja projektu wymagała zaprojektowania od podstaw nowego pojazdu firmy MELEX. W niniejszym artykule przedstawiono wybrane zagadnienia związane z nową konstrukcją.
EN
Environmental policy imposes on individual EU Member States requirements for emission-free transport. In this regard, measures were taken to develop a new delivery vehicle with a DMC up to 3.5. The idea was implemented with the use of NCBiR funds – project no. POIR.01.02.00-00-0194/16 – under the INNOMOTO sector program. The implementation of the project required designing a new MELEX vehicle from scratch. This article presents selected issues related to the new structure.
EN
Safety belts are one of the most significant elements of car equipment classified as passive safety. This paper provides a comparative material analysis of critical components of a trusted manufacturer's six-point harness used in motorsports racing with commercially available imitation belts. Despite the FIA certification labels, the imitation belts are characterized by extremely poor quality in the selection of materials for components such as the snap hooks and the locking sleeves in the central fastening mechanism, posing a real hazard to unaware belt users.
6
Content available remote Passive safety features of a type 227M rail vehicle
EN
The safety of passengers in rail transport is one of the most important aspects considered in the design and construction of rail vehicles. Maintaining low mortality statistics for this branch of transport requires the development of transport systems, but also the further development of materials and systems used in the construction of vehicles that move on the tracks in Poland and the world. This article presents the issues of passive safety solutions based on the structure of the 227M light rail vehicle.
PL
Bezpieczeństwo pasażerów w transporcie szynowym jest jednym z najważniejszych aspektów konstrukcji pojazdów szynowych. Utrzymanie niskich statystyk śmiertelności w tej gałęzi transportu wymaga rozwoju systemów transportowych, ale także dalszego rozwoju materiałów i systemów stosowanych w konstrukcji pojazdów, które poruszają się po torach Polski i świata. W niniejszym artykule przedstawiono zagadnienia bezpieczeństwa pasywnego na podstawie konstrukcji lekkiego pojazdu szynowego typu 227M.
PL
Polityka ekologiczna nakłada na poszczególne państwa członkowskie UE wymagania dotyczące bezemisyjnego transportu. W tym zakresie podjęto działania związane z opracowaniem nowego pojazdu dostawczego o dmc do 3,5. Pomysł został zrealizowany z wykorzystaniem środków NCBiR – projekt nr POIR.01.02.00-00-0194/16 – w ramach programu sektorowego INNOMOTO. Realizacja projektu wymagała zaprojektowania od podstaw nowego pojazdu firmy MELEX. W niniejszym artykule przedstawiono wybrane zagadnienia związane z nową konstrukcją.
EN
Environmental policy imposes on individual EU Member States requirements for emission-free transport. In this regard, measures were taken to develop a new delivery vehicle with a DMC up to 3.5. The idea was implemented with the use of NCBiR funds - project no. POIR.01.02.00-00-0194 / 16 - under the INNOMOTO sector program. The implementation of the project required designing a new MELEX vehicle from scratch. This article presents selected issues related to the new structure.
EN
Nowadays trends related to the road safety make the lighting poles producers meet rigorous requirements that decrease the risk of death and injury of vehicle drivers in case of the impact. New requirements are in force from 1 January 2015, when Road and Bridge Research Institute informed that each pole liable to a direct vehicle impact has to meet Standard PN-EN 12767. The article presents the design of a novel, safe lighting pole. The novelty lies in the pole simplicity, which results in the manufacturing technology the cost of which is comparable to that of the conventional pole. Compared to the conventional poles of thickness 3 mm and greater, this one is made of thin-walled steel sheet of increased strength parameters and specially designed sleeve that is fixed to the base plate. The crash tests carried out on the track for the impact experiments proved that the requirements of the standards in the driver highest safety class and in the high vehicle kinetic energy absorption were satisfied both for the speed impact 35 km/h and 100 km/h. The numerical model for simulations of the vehicle behaviour during and after the impact was implemented in software Ansys LS-Dyna. The simplifications of some elements were of negligible influence on the analysed phenomena. The comparative parameters were ASI, THIV and exit velocity of the vehicle. The numerical results were close to the empirical ones, therefore they confirmed that finite element analysis can be successfully applied at the stage of elaborating of the initial concepts of the road lightning poles. It follows that the number of expensive crash tests can be reduced.
EN
Absorption of impact energy by the passive safety elements of the vehicle body is the basic feature to ensure conditions of safety for the driver and passengers in transport. The parts especially designed for this objective in the self-supporting car body are longitudinals. Their energy-absorbing features are designed in different ways. Evaluation of the degree to which the vehicle (body) ensures safety during a collision is difficult and expensive. Usually, tests under impact conditions are required. The most advanced and costly are the tests carried out on a complete vehicle (whole real object for tests). Whole vehicle testing can be replaced by testing of individual car body elements (for example longitudinal). The main aim of this article is to present and compare the results of dynamic studies on model energy-consuming objects (new model longitudinals and model longitudinals repaired with welding methods). For the purpose of this study, models of vehicle passive safety elements (model longitudinals) were designed. On the basis of the conducted tests, it was found that it is worth considering the replacement of collision tests of the whole vehicle by tests of its individual components. This can be considered a new approach that is not widely used. Currently, most often, crash tests of entire vehicles are conducted (high costs) or computer simulations are performer (often with unsatisfactory accuracy).
10
Content available remote Electric car crashenergy absorbing structure
EN
Most of the current electric cars are derived from recreational vehicles; hence, there is a necessity to develop passive safety systems that meet the current traffic requirements. This paper presents passive safety issues and the results of the real model studies.
PL
Większość użytkowych samochodów elektrycznych produkowanych obecnie w Polsce wywodzi się z elektrycznych pojazdów rekreacyjnych. Stąd konieczność dostosowania ich konstrukcji nośnych do wymagań bezpieczeństwa stawianych pojazdom drogowym. W artykule przedstawiono wymagania prawne w tym zakresie oraz wyniki badań nad obiektami rzeczywistymi.
EN
The manner and degree of taking over impact energy by the passive safety elements of the vehicle body is the basis for providing conditions for the survival of people using the means of transport (driver and passengers). The elements specially designed for this purpose in the self-supporting body are longitudinals. Their energy-absorbing properties are designed by using a specific shape, by using appropriate connections of their components and by choosing the right material. Determining the degree to which the vehicle (body) ensures safety during collision requires testing. The most complex and expensive tests are the ones carried out on a complete real object (whole vehicle). The solution worth considering is a bench test of individual body elements designed as energy-consuming (for example, longitudinals). In addition, it is also possible to carry out computer simulations in this area. The purpose of this article was to present and compare the results of dynamic studies on model energy-consuming real objects and compare the results obtained this way with the results of computer simulation in the same range. The scope of work was adopted on this basis: passive safety, model energy-absorbing elements of steel self-supporting vehicle body, dynamic tests, computer simulations. For the purpose of this study, a model of vehicle passive safety elements (model longitudinals) was designed for which dynamic tests were carried out on a specially designed test stand (speed of the hammer was up to 9.7 m/s, impact energy was up to 23.6 kJ). This test stand enabled registration of the deceleration during impact and deformation of the tested object. Next, computer simulations were carried out for geometrically and material-identical models. On the basis of the conducted tests, it was found that it is worth considering the replacement of collision tests of the whole vehicle by tests of its individual components. These tests can also be supported by computer simulations.
EN
The paper presents the results of laboratory simulation tests of a suspension system for a car seat. The first part of the paper contains a description of the experiment, paying particular attention to the conditions in which the tests were conducted and the properties of the electrically controlled damper, which was mounted in the tested car seat’s suspension. Graphs of the damper’s operation were determined for different values of current intensity and the signal controlling the damper’s damping ratio and then the damping characteristics were determined on this basis. Simulated tests of the car seat’s suspension were carried out on a car component test station. During the tests, the values measured were the acceleration recorded at selected points on the dummy, which was placed on a seat equipped with suspension using a magnetorheological (MR) damper during the experiment. The second part of the paper presents an analysis of the results of the experimental tests with particular emphasis on the influence of the current that controls the operation of the damper on the values of the RMS index of the acceleration at selected points of the dummy.
13
Content available remote E-car’s door beam optimization
PL
Bezpieczeństwo bierne pojazdów jest jednym z ważniejszych problemów konstrukcyjnych. Rozwiązuje się go poprzez zastosowanie odpowiednich materiałów, głównie stali o bardzo wysokiej wytrzymałości i odpowiednie ukształtowanie elementów konstrukcyjnych. Niniejsze opracowanie przedstawia wyniki optymalizacji belki drzwi kabiny pojazdu N-Truck, projektowanego w ramach programu INNOMOTO, projekt nr: POIR.01.02.00-00-0194/16. Jako kryterium przyjęto graniczne wartości dopuszczalnych odkształceń elementów usztywniających oraz wartości naprężeń.
PL
Tradycje budowy lekkich pojazdów elektrycznych sięgają w Polsce lat 70. ubiegłego stulecia. Większość obecnych konstrukcji wywodzi się z konstrukcji rekreacyjnych, stąd konieczność wypracowania dla tej grupy pojazdów systemów zabezpieczeń biernych spełniających obecne wymagania ruchu drogowego. W artykule zostały poruszone kwestie bezpieczeństwa biernego oraz koncepcja zabezpieczeń przed skutkami zderzeń.
EN
The traditions of construction in Poland light electric vehicles go back to the 1970s. Most of the current structures of electric cars originate from recreational constructions, hence the need to develop passive safety systems for this group of vehicles that meet current traffic requirements. Passive safety issues and the concept of collision protection were discussed in the paper.
15
Content available Passive safety mechanisms in freight wagons
EN
Safety is one of the most important aspects of the railway sector. The issue is of particular significance in the transportation of hazardous goods that pose a threat to human health and life and have a damaging effect on the natural environment. Modern structures of freight wagons meet the requirements specified mainly in the International Carriage of Dangerous Goods by Rail (RID), enabling safe transportation of these goods by rail. Equipping them in appropriate passive safety mechanisms makes it possible to limit the negative effects of any potential adverse events. These mechanisms feature sub-assemblies that make it possible to absorb impact energy, eliminate the wheel climbing phenomenon, detect instances of derailment, and reduce the damage caused to wagon filling valves.
16
Content available remote Vehicle technical malfunctions and their impact on traffic safety
EN
Traffic safety is closely interrelated to the technical condition of vehicles participating in road transport. The said condition should be understood comprehensively, not only in terms of technical fitness, equipment, loading methods, and safe passenger transport, but also from the perspective of passive safety aimed at minimising the impact of accidents. Unfortunately, the issues of providing passive safety, and its deficiencies, are often neglected, yet it is also crucial to penal liability. It is certain that the deficiencies identified are part of cause-and-effect relationships which are very often difficult to define in a straightforward way.
PL
Z zapewnieniem bezpieczeństwa ruchu ściśle wiąże się sprawność techniczna pojazdów uczestniczących w komunikacji drogowej. Ową sprawność powinniśmy rozumieć szeroko, nie tylko przez sprawność techniczną, wyposażenie, sposób załadunku, przewożenia pasażerów, ale również z punktu widzenia bezpieczeństwa biernego zapewniającego zmniejszanie skutków wypadku. Niestety, problem zapewnienia bezpieczeństwa biernego, jego niedostatków umyka uwadze, a jest on niezwykle istotny również dla odpowiedzialności karnej. Wskazane niedostatki muszą się bowiem łączyć związkiem przyczynowym ze skutkiem, a powyższe wielokrotnie wcale nie należy do jednoznacznych.
EN
This article presents passive safety issues of a buggy-type car. The issue has been presented in the context of the dynamic impact analysis of the aluminium frame of the vehicle into a rigid wall. The study was conducted using the finite element method in the Abaqus® software. With regard to numerical calculations, a dynamic impact simulation was performed, which defined the critical areas of the structure. Numerical analysis allowed to obtain both the state of the strain of the frame structure and the characteristics of the construction work during the impact. The results of the research provide high-quality prepared FEM model.
EN
The article presents driver assist systems of a passenger car. The focus was on the latest active safety systems. Describes, inter alia: Active Cruise Control (ACC) with ACC Plus, lane departure warning system (LDW, AFIL, ALKA) and LKAS, traffic sign recognition system, pedestrian and animal detection systems. Also were discussed autonomous systems, for example Google car and car Tesla S, based on the previously mentioned active driver assist systems.
PL
W artykule zaprezentowano systemy wpierające pracę kierowcy samochodu osobowego. Skupiono się na najnowszych aktywnych systemach bezpieczeństwa czynnego. Opisano między innymi: aktywny tempomat (ACC) wraz z ACCplus, system sygnalizujący przekroczenie linii rozdzielających pasy ruchu (LDW, AFIL, ALKA) oraz LKAS, system wykrywający znaki drogowe, systemy wykrywające pieszych oraz zwierzęta. Omówiono również systemy autonomiczne, na przykładzie Google car oraz samochodu Tesla S, bazujące na przedstawionych wcześniej systemach wspomagających kierowcę.
EN
The performance of passive safety devices to protect vulnerable road users, or otherwise endangered persons, from severe injuries in cases of impacts and accidents has improved notably in recent decades. The devices’ levels of performance appear to have plateaued but the numbers of severe injuries and deaths caused in such incidents could be decreased further if new solutions are found. At first, the possibilities for improving the impact behavior of passive safety devices may appear to be restricted to device geometry; however, it is in fact also possible to rethink the applied materials and to utilize natural principles in their design. In this study, impact related brain injury mechanisms and injury criteria are investigated using dynamic simulations and Finite Element Head Models, results from which are compared with data collected from real-life accidents. As these tools are advancing considerably in terms of accuracy, information density and complexity, they provide, like expert knowledge from the fields of biomechanics, biomedicine and neuroscience, valuable input for further development.
EN
The fundamental principles of the passive protection concept of high-speed passenger trains at accident collisions on 1520 mm gauge railways have been developed. The scientific methodology and mathematical models for the analysis of plastic deformation of cab frame elements and energy-absorbing devices (EAD) at an impact have been developed. The cab frame and EAD for a new-generation locomotive have been designed. The EAD prototype crash test has been carried out.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.