Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ortoobraz
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The topic of the article is the analysis of regulations referring to photogrammetry, which have been in effect since the latest amendments in the Act Geodetic and Cartographic Law were introduced. Among many new rules, the four most important for regulations for photogrammetry were selected for the analysis. The largest part of analyses deals with so-called technical standards. This regulation introduces the term: geodetic photogrammetric measurement and places identical accuracy requirements as for field measurement. However, photogrammetric measurement, in this law is treated less thoroughly than other techniques. Often in this interpretation of the regulations there are different opinions between the ones who order the measurements and those who carry them out. The article shows which regulations are not satisfactorily clear and can be interpreted in different ways. Moreover, the article refers to unsatisfactory consistency between the analysed enactments. Finally, it was stated that the regulations, despite the indicated drawbacks, allow the application of photogrammetry in surveying and there is a prospect of granting photogrammetry the rank of the operation method, especially in large projects, e.g. the update of cadastral maps and land survey maps
PL
Przedmiotem artykułu jest analiza przepisów dotyczących fotogrametrii, jakie obowiązują po ostatnich zmianach w Prawie geodezyjnym i kartograficznym. Przeanalizowano cztery najważniejsze dla fotogrametrii spośród szeregu nowych przepisów, jakie powstały w ostatnich latach. Najwięcej miejsca poświęcono tzw. standardom technicznym. W artykule wskazano, które przepisy są niedostateczne jasne i mogą być różnie interpretowane. W konkluzji stwierdzono, że przepisy, pomimo usterek i niepełnej harmonizacji, umożliwiają stosowanie fotogrametrii w pracach geodezyjnych i rysuje się perspektywa nadania fotogrametrii rangi metody operacyjnej, zwłaszcza w dużych projektach.
PL
Wraz z szybkim rozwojem bezinwazyjnych metod pomiarowych opartych na pomiarze odległości od badanego obiektu zwiększyła się możliwość pozyskiwania danych z większą dokładnością przy jednoczesnym skróceniu czasu pomiaru. Pozwoliło to znacznie poszerzyć efektywność metod fotogrametrycznych w dokumentacji i analizie obiektów dziedzictwa kulturowego, poprzez połączenie danych z naziemnego skaningu laserowego z obrazami. Taka integracja pozwala pozyskać wymagane zwykle w tych zastosowaniach 3D modele obiektów, a także cyfrowe mapy obrazowe – ortoobrazy oraz produkty wektorowe. Jakość produktów fotogrametrycznych jest charakteryzowana zarówno ich dokładnością jak i zasobem treści, tj. liczbą i wielkością zawartych w nich detali. Jest to zawsze zależne od rozdzielczości geometrycznej danych źródłowych. Badania przedstawione w niniejszym referacie dotyczą oceny jakości dwóch produktów, obrazowego - ortoobrazu i wektorowego, wygenerowanych dla wybranych fragmentów obiektu architektonicznego. Danymi źródłowymi są chmury punktów z naziemnego skaningu laserowego oraz obrazy cyfrowe. Oba rodzaje danych zostały pozyskane w kilku rozdzielczościach. Numeryczne Modele Obiektu pozyskane z chmur punktów o różnej rozdzielczości, stanowią podstawę do orientacji zewnętrznej obrazów oraz stworzenia kilku wersji ortoobrazów o różnych rozdzielczościach. Porównanie tych produktów pomiędzy sobą pozwoli ocenić wpływ rozdzielczości danych źródłowych na ich jakość (dokładność, zasób informacji). Dodatkowa analiza zostanie przeprowadzona na podstawie porównania produktów wektorowych, pozyskanych na podstawie wektoryzacji (monoplotingu) ortoobrazów.
EN
Due to considerable development of the non-invasion measurement technologies, taking advantages from the distance measurement, the possibility of data acquisition increased and at the same time the measurement period has been reduced. This, by combination of close range laser scanning data and images, enabled the wider expansion of photogrammetric methods effectiveness in registration and analysis of cultural heritage objects. Mentioned integration allows acquisition of objects threedimensional models and in addition digital image maps – true-ortho and vector products. The quality of photogrammetric products is defined by accuracy and the range of content, therefore by number and the minuteness of detail. That always depends on initial data geometrical resolution. The research results presented in the following paper concern the quality valuation of two products, image of true-ortho and vector data, created for selected parts of architectural object. Source data is represented by point collection in cloud, acquired from close range laser scanning and photo images. Both data collections has been acquired with diversified resolutions. The exterior orientation of images and several versions of the true-ortho are based on numeric models of the object, acquired with specified resolutions. The comparison of these products gives the opportunity to rate the influence of initial data resolution on their quality (accuracy, information volume). Additional analysis will be performed on the base of vector products comparison, acquired from monoplotting and true-ortho images. As a conclusion of experiment it was proved that geometric resolution has significant impact on the possibility of generation and on the accuracy of relative orientation TLS scans. If creation of high-resolution products is considered, scanning resolution of about 2 mm should be applied and in case of architecture details - 1 mm. It was also noted that scanning angle and object structure has significant influence on accuracy and completeness of the data. For creation of trueorthoimages for architecture purposes high-resolution ground-based images in geometry close to normal case are recommended to improve their quality. The use of grayscale true-orthoimages with values from scanner intensity is not advised. Presented research proved also that accuracy of manual and automated vectorisation results depend significantly on the resolution of the generated orthoimages (scans and images resolution) and mainly of blur effect and possible pixel size.
PL
Pod koniec 2011 roku wprowadzono regulacje prawną dotyczącą trybu i standardów technicznych tworzenia, aktualizacji i udostępniania baz danych zobrazowań lotniczych i satelitarnych oraz ortofotomapy i numerycznego modelu terenu. Rozporządzenie zapowiada budowę systemu teleinformatycznego przeznaczonego w szczególności do wyszukiwania, przeglądania i przetwarzania zbiorów danych. Sam proces przetworzenia zdjęcia lotniczego do postaci ortoobrazu (generowanie ortofotomapy) jest złożony i wymaga użycia specjalistycznego oprogramowania. W niniejszym artykule autorzy przedstawią propozycję rozwiązania internetowego do generowania cyfrowej ortofotomapy z wyszukanego i wybranego przez użytkownika systemu stereogramu zdjęć. Autorzy szczegółowo opisują podstawy matematyczne budowy ortoobrazu jako funkcji oraz zamieszczają w formie diagramu UML algorytm generowania ortofotomapy w aplikacji internetowej. Ze względu na dostępność rozwiązania zdecydowano się na architekturę klient-serwer, gdzie klientem jest przeglądarka internetowa użytkownika. Oprogramowanie, na które składają się aplety i servlety zostały napisane w języku Java. Ortorektyfikacja wykonywana jest na serwerze, natomiast jej wynik wyświetlany jest w oknie przeglądarki internetowej użytkownika systemu. Aplikacja jest dostępna na stronie internetowej http://www.kfit.uwm.edu.pl/zp1/or.html .W artykule przedstawioną instrukcję „krok po kroku” jak korzystać z proponowanego rozwiązania, którego walory użytkowe i dydaktyczne są duże.
EN
The process of creating orthophotomaps from aerial photographs is complex and requiring the specialist software on the digital photogrammetric station. However, it turns out that this process with certain limitations can be executed by the Internet. Even, if there is a simplified solution, its didactic and functional advantages are great. These advantages induced the authors to work out the appropriate method of the realization of such a problem. In the article the solution of generating orthophotomap via the Internet is described. On account of the availability of the presented solution the author decided to use the client-server architecture of the application, in which the Internet browser of the user is a client (a program accesses a remote service on another computer by network). Applications of this type are being called web applications. The mathematical foundations of construction of orthoimage as a function are described. The algorithm of orthoimage generation is presented with the aid of UML diagram. The terrain coordinates of points, which are being used to create digital terrain model (DTM), are measured and calculated in the automatic way. However, the area of the orthophotomap is small and limited by dimension of the window of the Internet browser. Thus, in the process of orthoimage creation via the Internet the authors assumed a simplified DTM in the form of the plane. Orthorectification is made on the server side but the grid coordinate system is superimposed on the orthophotomap by means of applet on the client side. Besause of resampling, the created orthoimage has a worse quality than a source image. Therefore, the source photograph with the system of coordinates is also presented. In both cases the image and terrain coordinates of point shown by the cursor are calculated and printed in the header of the Internet browser window. The described application works on the Department of Photogrammetry and Remote Sensing UWM server http://www.kfit.uwm.edu.pl/zp1/or.html.
PL
Dynamiczny rozwój technologiczny satelitów obrazujących powierzchnię Ziemi doprowadził do powstania wysokorozdzielczych systemów satelitarnych - VHRS (z ang. Very High Resolution Satellite). Dane obrazowe pozyskiwane z ich systemów posiadają szerokie spektrum zastosowania w różnych dziedzinach gospodarki. Wiodącym produktem jest cyfrowa orotofotomapa. Istotnym problemem jest jej generowanie na tereny niedostępne. W tym ujęciu teren niedostępny to fragment powierzchni Ziemi, na którym nie ma możliwości pomiaru osnowy fotogrametrycznej, z powodu innego niż technologiczny. W celu rozwiązania powyższego problemu przeprowadzono badania, których wyniki oraz wnioski zawarte są w artykule.
EN
The dynamic technological development of satellites imaging the Earth's surface prompted an appearance of Very High Resolution Satellite (VHRS). Imagery data acquired from such satellites have very wide range of applications in different branches of economic activity. The most popular product is digital ortoimage. However, its generating for inaccessible area is a very essential problem. An inaccessible area means an area of the Earth's surface where it is impossible, from the reason other than technological, to measure reference points. To solve this problem, a series of research were conducted. Their results and conclusions are presented in this paper.
PL
Celem pracy było przeprowadzenie analizy orientacji scen stereo w zależności od liczby wykorzystanych fotopunktów, zbadanie wpływu odchyleń standardowych biasu na wyniki orientacji oraz ocena dokładnościowa numerycznych modeli terenu i ortoobrazów wygenerowanych z wysokorozdzielczych zobrazowań satelitarnych pozyskanych z satelitów GeoEye-1 oraz Ikonos-2. W literaturze anglojęzycznej tematykę biasu, czyli poprawki wynikającej z podniesienia dokładności korekcji RPC (ang. Rational Polynomial Coefficient), poruszają w swoich artykułach C. S. Fraser oraz H. B. Hanley. Podejmują oni głównie problem orientacji wysokorozdzielczych zobrazowań satelitarnych oraz wpływ biasu na jej wynik. W Polsce na temat ten napisano niewiele referatów, dlatego też nasz zespół zdecydował się na przeprowadzenie niezbędnych badań i analiz. Satelita GeoEye-1, po umieszczeniu na orbicie we wrześniu 2008 roku, osiągnął swoją pełną zdolność operacyjną już w lutym 2009 roku. Jako jeden z pierwszych dostarczał zobrazowań o półmetrowej rozdzielczości przestrzennej w zakresie panchromatycznym. Dlatego też przedmiotem badań były dwie panchromatyczne stereopary - jedna pozyskana właśnie z satelity GeoEye-1, a druga z Ikonos-2 wystrzelonego w 1999 roku. Zarówno Ikonos-2, jak i GeoEye-1 są reprezentatywnymi satelitami dostarczającymi wysokorozdzielczych danych obrazowych. Charakteryzują się podobnymi parametrami technicznymi, własnościami orbity, pozyskują zobrazowania w trybie panchromatycznym i wielospektralnym, a także dostarczają zobrazowań o rozdzielczości przestrzennej w zakresie panchromatycznym poniżej 1 metra. Opracowane stereopary przedstawiają miasto Hobart (Australia) oraz jego okolice. Jest to teren zróżnicowany topograficznie, obejmujący zatokę, obszar silnie zurbanizowany oraz zalesione pasmo górskie. Zakres wysokości obejmuje przedział około od 0 do 1300 m. Zróżnicowanie wysokościowe opracowywanego terenu miało znaczący wpływ na jakość finalnych produktów fotogrametrycznych, co również zostało przeanalizowane. Do opracowania wykorzystano część osnowy fotogrametrycznej pomierzonej w 2004 roku techniką GPS. Do orientacji użyto 19 fotopunktów. Istotą poniższych rozważań było porównanie wyników orientacji przeprowadzonej przy różnej liczbie fotopunktów, z zachowaniem stałej konfiguracji punktów kontrolnych. Na podstawie przeprowadzonej analizy określona została liczba fotopunktów właściwa dla orientacji każdej stereopary. Kolejnym zagadnieniem była korekcja biasu w RPC. Przeprowadzona została analiza zależności zachodzących pomiędzy obrazem a terenem podczas orientacji zobrazowań oraz opisano równania poprawek służące eliminacji biasu przed i po orientacji zewnętrznej, przeprowadzonej na podstawie oryginalnych RPC. Istotną kwestią było określenie zależności między wartością błędu RMS (ang. Root Mean Square) wykonanej orientacji a odchyleniem standardowym biasu w kierunkach osi układu obrazowego (wiersza i kolumny - ng. line i sample). Po określeniu liczby fotopunktów odpowiedniej do wykonania orientacji oraz najkorzystniejszych wartości odchyleń standardowych biasu w obu kierunkach, wygenerowane zostały numeryczne modele terenu. Zastosowano cyfrową korelację obrazów metodą ABM (ang. Area Based Matching). Wynikowy rozmiar pikseli numerycznych modeli terenu generowanych z obu stereopar wyniósł 10 m. Powstałe modele przebadano pod kątem dokładności pionowej położenia punktu, poprzez porównanie wysokości pomierzonych techniką GPS z tożsamymi wysokościami pomierzonymi na danym modelu wysokościowym. Kolejnym etapem było wygenerowanie ortoobrazów z pojedynczych zdjęć ze stereopary oraz przeanalizowanie ich dokładności. Wymiar oczka generowanych produktów fotogrametrycznych wyniósł odpowiednio dla GeoEye-1 0,5 m i 1 m dla Ikonosa-2. Analiza dokładności została przeprowadzona na podstawie porównania odległości między punktami kontrolnymi, pomierzonymi na ortoobrazach i niebiorącymi udziału w orientacji, a odległościami obliczonymi ze współrzędnych pomierzonych za pomocą techniki GPS. Opracowanie to dotyczy wyżej wymienionych zagadnień. Całość została zakończona podsumowaniem oraz wnioskami wynikłymi w trakcie badań.
EN
The major purpose of this paper is to analyse stereopair orientation and bias compensation in rational polynomial coefficients. Moreover, the accuracy of digital terrain models and orthoimages generated from high-resolution satellite images acquired by GeoEye-1 and Ikonos-2 was evaluated. Bias, so the correction caused by increasing the accuracy of the RPC (Rational Polynomial Coefficient) correction, had been mentioned in a number of English articles by C. S. Fraser and H. B . H anley. They discuss the problem of orientation with regards to high resolution satellite imagery and the influence of bias on the results of this orientation. In Poland, there are not many publications concerning this topic, which is why our research team had decided to conduct the necessary research and analyses. GeoEye-1, launched in September 2008, commenced full commercial operations in February, 2009. As one of the first satellites it develops panchromatic images in a half-meter resolution. That is why the subject of this research are two panchromatic stereoscenes - one acquired by GeoEye-1, and second by Ikonos-2, launched in 1999. Both of them are representative satellites acquiring high-resolution image data. They have similar technique parameters, orbit characteristics, get images in panchromatic and multispectral modes and develop panchromatic scenes in less than 1-meter resolution. Used stereoscenes show the city of Hobart (Australia) and its neigbourhood. This area has variabled topography and includes the bay, strongly urban terrain and mountains covered with forest. The heights reach around from 0 to 1300 meters. This height variety can has significant impact on final photogrammetric products, what also was studied. In the project we used the part of the test field measured in 2004 by GPS, consisting of 19 control points which were used for orientation. The issue of this paper will be comparison of orientation effects carried on the different number of control points without changes in check point configuration. Depending on the analysis, the accurate number of control points to orientation of each stereoscenes was chosen. The next problem was bias compensation in RPC (Rational Polynomial Coefficients). An analysis of the relation had been conducted during scene orientation. Moreover, the correction equations of bias compensation before and after orientation depending on original RPC will be described. The important problem will be indication of relation between RMS error of orientation and standard deviation of line and sample in bias correction. After indication of the number of control points accurate to orientation and the most profitable parameters of line and sample, we generated digital terrain models. We used ABM correlation method. Output cell size for both of stereopairs was equal to 10 meters. Generated digital terrain models were studied in the aspect of point height accuracy by the comparison of heights measured by GPS with elevations measured on explored terrain models. The next stage was generation of orthoimages from single scenes of steropairs and analysis of their accuracy. The output cell size of generated photogrammetric products was equal to 0.5 and 1 meter for GeoEye-1 and Ikonos-2. Analysis of accuracy was provided in dependence on comparison of distances between check points not used in bundle adjustment and measured on generated orthoimages and distances computed from coordinates measured by GPS. The paper concerns the above problems and it is ended by summary and proposals coming from the research.
PL
Przedmiotem pracy jest analiza możliwości dopasowania radiometrycznego ort obrazów w oparciu o model barw LAB zamiast modelu RGB. W pierwszej części podkreślono aktualność problemu dopasowania radiometrycznego w kontekście wykonywania projektów fotogrametrycznych na podstawie kilkuset a nawet tysięcy zdjęć. Następnie przedstawiono model przestrzeni barw LAB na tle innych modeli. W kolejnym rozdziale porównano model LAB z modelem RGB wskazując na zalety tego pierwszego. Ponieważ z rozważań teoretycznych wysnuto wniosek o zaletach aplikowania modelu LAB w dopasowaniu radiometrycznym obrazów, w kolejnej części sformułowano zarys koncepcji mozaikowania ortoobrazów na bazie modelu LAB. Następnie omówiono eksperyment badawczy, w którym wykorzystano ortoobrazy pochodzące z dwóch różnych projektów fotogrametrycznych, z których w jednym zastosowano kamerę analogową a w drugim – cyfrową. Ortoobrazy charakteryzowały się bardzo mocnym zróżnicowaniem radiometrii, w barwie jednego przeważają ciepłe tony z nadmierną dominantą żółtego podczas gdy drugi ma tonację zimną, za dużo w nim zszarzałej barwy zielonej. Kolejna różnica to stopień zawartości szumów – w jednym jest wysoki, a w drugim niski. Takie zróżnicowanie radiometrii stanowi duży problem przy mozaikowaniu. Ortoobrazy zmozaikowano osobno w modelu RGB i w modelu LAB. W obu przypadkach nie uzyskano pełnej jednolitości tonalnej, ale obraz zmontowany w modelu LAB jest znacznie lepszy. Wyniki eksperymentu uznano za potwierdzenie przydatności przestrzeni LAB w dopasowaniu radiometrycznym ortoobrazów.
EN
The scope of the work involves analysis of the possibilities regarding radiometric adjustment of orthoimages based on the LAB colour model instead of the RGB model. The first part emphasises relevance of the radiometric adjustment problem in the context of performing photogrammetric projects on the basis of a few hundred or even thousands of photographs. Then, the LAB colour space is presented compared to other models. The next chapter contains comparison between the LAB model and the RGB model, indicating advantages of the former one. Since the theoretical discussion allowed to draw a conclusion about advantages of applying the LAB model in radiometric adjustment of orthoimages, the next part presents formulated outline of a concept for orthoimage mosaic on the basis of the LAB model. Then, a research experiment is discussed, in which researchers have used orthoimages derived from two different photogrammetric projects. An analogue camera was applied in one of them, and digital camera in the other. Orthoimages are characterised by very strong radiometry diversification. Warm tones with excessive yellow prevail in one orthoimage, while the other one has cold tonality, containing too much ashen green. Another difference is the degree of interference content – in one it is high and in the other low. Such radiometry diversification constitutes a considerable problem during mosaicing. Orthoimages went through mosaicing in the RGB model and in the LAB model separately. In neither of the cases full tonal uniformity was obtained, but image edited in the LAB model is much better. The experiment results are deemed to confirm the LAB space usability for radiometric adjustment of orthoimages.
PL
Ortofotomapa cyfrowa powstaje w wyniku przetworzenia pojedynczych zdjęć lotniczych w funkcji rzeźby terenu (NMT) i elementów orientacji zdjęcia. Otrzymany w wyniku przetwarzania ortoobraz powinien spełniać m.in. dwa warunki: współrzędne płaskie x, y pikseli obrazu powinny być poprawne a obraz powinien być poprawny wizualnie, tzn. pozbawiony rozmazań i dublowania treści. Jest to trudne do spełnienia, gdy teren pokryty jest wysoką zwartą roślinnością lub innymi wysokimi przeszkodami tworzącymi na zdjęciu efekt „martwych pól”. W ortofotografii piksele obiektów zasłaniających teren (martwe pola) doznają korekt przeznaczonych dla punktów terenowych, tym samym zajmują na ortoobrazie miejsce przeznaczone dla innego (niewidocznego) punktu. Powstają wtedy często podwójne obrazy związane z wielokrotnym wykorzystaniem tego samego piksela. Dla obszarów leśnych nie zawsze można wykonać ortofotomapę, która miałaby w każdym miejscu poprawną geometrię i równocześnie wizualnie poprawny wygląd. Kompromis polega na częściowej rezygnacji z poprawności geometrycznej w miejscach w których zakłócona byłaby ciągłość obrazu. W Zakładzie Fotogrametrii i Informatyki Teledetekcyjnej AGH opracowano ortofotomapę Bieszczadzkiego Parku Narodowego. Do tego celu wykorzystano 286 zdjęć spektrostrefowych w skali 1:10 000. Doświadczenia zebrane przy tym opracowaniu posłużyły do sformułowania zasad przetwarzania zdjęć obszarów o dużym stopniu zalesienia oraz kontroli dokładności i wizualnej jakości ortofotomapy.
8
PL
Praca stanowi przykład wykorzystania wyników prac geodezyjnych, kartograficznych i fotogrametrycznych do określania cech hydraulicznych doliny rzeki w przeprowadzanej symulacji przepływu wody. Numeryczny Model rzeźby Terenu wykorzystano do bezpośredniego opisu geometrii obszaru przepływu wody w dwuwymiarowym modelu hydrodynamicznym RMA2 z pakietu SMS. Ortoobraz i Numeryczny Model Pokrycia terenu zastosowano do wyznaczenia obszarów różnorodnych form użytkowania terenu, z którymi związane są współczynniki hydrologicznej szorstkości terenu. Podstawowym sprzętem wykorzystanym podczas realizacji pracy była fotogrametryczna stacja cyfrowa ImageStation ZIV.
EN
In the paper was presented direction for use geodesy, cartography and photogrammetry products, like are Digital Terrain Model (DTM), Digital terrain's Cover Model and digital orthophoto to determination of river valley hydraulic characteristic. DTM was used to direct description of geometry of water flow region on the two-dimensional hydrodynamic model RMA2 from the SMS software package - the mesh nodes of hydrodynamic model were imported from DTM. Also it was found that digital orthophoto and Digital terrain's Cover Model were useful to determination of material types areas, with which roughness values were combined. Digital Photogrammetric Workstation ImageStattion ZIV was the primery equipment, which was used to generation DTM and creation digital orthophoto.
PL
Autorzy artykułu próbują wskazać jeden z kierunków rozwoju fotogrametrii cyfrowej, który wynika z możliwości wykorzystania technologii wspartej na możliwościach udostępnianych przez nowoczesne sieci komputerowe. W treści artykułu opisują założenia technologii systemu przetwarzania zdjęć fotogrametrycznych opartego na relacji klient-serwer jako formę odejścia od stanowiskowego rozwiązywania zagadnień fotogrametrii cyfrowej na rzecz rozwiązań sieciowych wspartych na silnej i bezpiecznej jednostce centralnej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.