Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 36

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  odpady z tworzyw sztucznych
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
W artykule opisano możliwość wykorzystania w budownictwie poprodukcyjnych odpadów plastikowych, takich jak folia zwykła i termokurczliwa. Wykorzystując specjalistyczną technologię, wytworzono kruszywo łamane o uziarnieniu do 8 mm z mieszanki materiałów syntetycznych PET/PVC/OPS (PPO). Materiały te pochodziły z odpadów generowanych podczas produkcji etykiet foliowych. W artykule przedstawiono wyniki badania właściwości kruszywa z recyklingu tworzyw sztucznych, takich jak gęstość nasypowa i ziaren, nasiąkliwość oraz parametry mechaniczne betonu. Przedstawiono również zdjęcia z mikroskopu skaningowego dla kruszywa z odpadów tworzyw sztucznych oraz dla betonu z jego zawartością. Zastosowanie ekologicznego kruszywa do betonu lekkiego wpłynie pozytywnie na ochronę środowiska naturalnego.
EN
The article describes the possibility of using post-production plastic waste, such as ordinary and shrink film, in construction. Using specialized technology, a crushed aggregate with a grain size of up to 8 mm was produced from a mixture of PET/PVC/OPS (PPO) synthetic materials. These materials were derived from waste generated during the production of film labels. In the article the results of testing the properties of the recycled plastic aggregate, such as bulk and grain density, absorbability and mechanical parameters of concrete, were presented. Scanning microscope images for aggregate made from plastic waste and for concrete with its content were also presented. The use of pro-ecological aggregate for lightweight concrete will have a positive impact on protection of natural environment.
2
Content available Recykling chemiczny tworzyw sztucznych
EN
Plastics are currently used in almost every branch of industry. Their popularity is due to excellent mechanical properties, durability combined with low weight. Global production of plastics in 2020 reached 387 million tons and a great amount of waste from plastics is generated as they are usually non-biodegradable and often are used only once before disposal. Since the 1970s, the problem of plastics pollution started to be noticed, and then the first regulations on their production, limiting and management options were introduced. There are several methods preventing the plastics waste going to landfill. Among the plastics management methods are mechanical recycling, solvent based purification, chemical recycling, energy recovery and biodegradation (Figure 1). Mechanical recycling is the reprocessing of the plastic waste to its original form (polymer) using simple physical operations like grinding, separating, extruding. This option is the most popular for thermoplastics as they are easily reprocessed and the cost operations are low. During solvent based purification the plastics products are purified from different additional compounds like colorants, antioxidants, fillers to obtain original polymer. Biodegradation is available only for some polymers. Energy recovery process releases the energy contained within plastics through combustion and is suitable only for materials which are difficult to recycle. Nowadays chemical recycling of plastic waste is the most noteworthy polymers recovery technique as it is complementary to mechanical recycling. Chemical recycling can be divided into two main processes: chemical and thermal depolymerization (Figure 2). Thermal depolymerization processes are conducted using heat and in the absence of oxygen, or with limited access to oxygen or other compounds (H2, CO2). It converts plastics into monomers or basic chemical (hydrocarbons, oil, H2O) and is typically used for polyolefins, PMMA, PS. During chemical depolymerization plastics are broken down into oligomers or monomers as a result of a chemical reaction with a low molecular weight agent (H2O, alcohols, amines, glycols, acids) and usually refers to condensation and addition polymers (PET, PC, PA, PU). Chemical recycling enables for multiple recycling of plastics to its monomers, which can be polymerized to produce the original polymer. The manuscript presents a literature review on chemical recycling of commonly used plastics such as vinyl polymers, polycondensation polymers, thermosets and polymer blends.
EN
Purpose: This paper aims to prepare depolymerized polyethylene terephthalate (DPET) powder from recycled plastic water bottles. Adding this DPET powder to the cement mortar was also studied. Design/methodology/approach: The adopted PET depolymerization process includes the usage of both ethylene glycol (EG) as solvent and nano-MgO as a catalyst. A bubble column reactor was designed for this process. Five different mortar groups were made; each has different DPET content of 0%, 1%, 3%, 6% and 9% as a sand replacement. The flexural strength testand the water absorption measurement are done after two curing periods: 7 and 28 days. Findings: The research finding demonstrated that the flexural strength of mortar was reduced by increasing the DPET powder percentage and the maximum dropping was 15% when 9% of DPET was added. The ability of the mortar to absorb the water was reduced by 14.5% when DPET powder was 9%. The mortar microstructure is featured with fewer cavities and porosity. Research limitations/implications: This work’s employed bubble column technique is limited only to the laboratory environment and needs to be scaled up within industrial mass production. For future research, it is suggested to decrease depolymerization time by using smaller pieces of plastic water bottle waste and trying other types of nanocatalyst. Practical implications: The modified mortar can be utilized in areas where moisture, rainfalls, and sanitation systems exist. Originality/value: The article claims that depolymerized waste PET improves chemical process efficiency by lowering reaction time and improving mass and heat transfer rates. Besides, this approach saves money. It is found out that the depolymerized plastic waste is much more functional due to its high cohesion capability than being used as small PET pieces.
EN
Purpose: This study was aimed to investigate the effectiveness of plastic waste as fine aggregates to partial replacement of sand reinforced with inorganic pigment from red stone to manufacture paving block for pedestrian application. This is an effort not only to reduce plastic waste in the environment but also as an innovative way to find out an alternative eco-friendly paving block material for public walkways with an attractive appearance while ensuring pedestrian comfort. Design/methodology/approach: Approaches were converted the plastic waste to plastic powder which is then used as fine particles to sand partial replacement. The red stone powder is used to give red color to the paving block surface. The paving block materials were completely mixed in a pan mixer and added water as much as 12% of the total mass of the materials used. The paving block was cast in a mold dimension size of 20 cm × 10 cm × 6 cm and pressed with a load of 6 tons using a pressing machine. The effect of natural river sand to plastic powder ratio and curing time on the compressive strength and water absorption were investigated. Findings: The study results confirmed that the replacement of sand with plastic powder decreased the compressive strength of paving block. By partial replacement of sand with plastic powder in the range of 10% to 50% by weight, the compressive strength and water absorption value of pavement after 30 days agitation were at range of 18.06-12.78 MPa and 4.28-3.25%, respectively. This value was still met the minimum requirement for pedestrian applications according to Indonesian National Standard. Research limitations/implications: Replacing sand up to 50% by weight with plastic waste produces paving blocks with compressive strength and water absorption suitable for sidewalks and pedestrians. It is needed to continue research in terms of durability tests in order to be comfortable with the practical use of the material. Practical implications: The use of plastic waste reinforced with red stone powder as fine aggregate makes it one of the alternative ways to reduce plastic waste in the environment and obtain eco-friendly paving blocks with an attractive appearance. Originality/value: It has been experimentally proven that replacing sand up to 50% by weight with plastic powder produces paving blocks that are suitable for pedestrians application. The addition of red stone powder pigment makes the color of paving block surface become more attractive appearance.
PL
Pojawienie się i szybkie rozprzestrzenienie na cały świat wirusa SARS-CoV-2 spowodowało gwałtowny wzrost produkcji odpadów z tworzyw sztucznych. Największy wzrost zapotrzebowania odnotowano w odniesieniu do środków ochrony osobistej ze względu na fakt, że wiele krajów nakazało ich noszenie w przestrzeni publicznej. W czasie pandemii zwiększyła się również produkcja jednorazowych opakowań żywnościowych. Naukowcy zauważają, że z powodu niewłaściwego gospodarowania odpadami z tworzyw sztucznych oraz usuwania środków ochrony osobistej (SOI) zwiększy się zanieczyszczenie środowiska. Należy wdrożyć racjonalne metody zagospodarowania i przetwarzania odpadów z tworzyw sztucznych, które powstały w czasie pandemii SARS-CoV-2, w taki sposób, aby nie zagrażały środowisku naturalnemu ani zdrowiu ludzkiemu. W niniejszym artykule zaproponowano metodę termicznego przetwarzania wskazanych odpadów, a mianowicie pirolizę, która może zastąpić składowanie oraz spalanie. Metoda ta umożliwia nie tylko skuteczną neutralizację odpadów niebezpiecznych, ale — co jest szczególnie istotne — prowadzi do powstania wartościowych produktów.
EN
The emergence and rapid worldwide spread of the SARS-CoV-2 virus resulted in increase in the production of plastic waste. The greatest increase in demand was recorded for personal protective equipment due to the fact that many countries have ordered their wearing in public space. The production of disposable food packaging has also increased during the pandemic. Researchers noted that environmental pollution will increase due to improper management of plastic waste and disposal of personal protective equipment (PPE). A rational method of management and processing of plastic waste generated during the SARS-CoV-2 pandemic should be developed in such a way that it does not endanger the environment or human health. This article proposes a method of thermal processing of the above-mentioned waste, namely pyrolysis, which can replace landfilling and incineration. This method allows not only effective neutralization of hazardous waste, but also, which is particularly important, leads to the creation of valuable products.
EN
In this paper, a numerical and experimental investigation of geometrical parameters of the blade for plastic bottle shredder was performed based on the Taguchi method in combination with a response surface method (RSM). Nowadays, plastic waste has become a major threat to the environment. Shredding, in which plastic waste is shredded into small bits, ready for transportation and further processing, is a crucial step in plastic recycling. Although many studies on plastic shredders were performed, there was still a need for more researches on the optimization of shredder blades. Hence, a numerical analysis was carried out to study the influences of the relevant geometrical parameters. Next, a two-step optimization process combining the Taguchi method and the RSM was utilized to define optimal parameters. The simulation results clearly confirmed that the current technique can triumph over the limitation of the Taguchi method, originated from a discrete optimization nature. The optimal blade was then fabricated and experimented, showing lower wear via measurement by an ICamScope® microscope. Hence, it can be clearly inferred from this investigation that the current optimization method is a simple, sufficient tool to be applied in such a traditional process without using any complicated algorithms or expensive software.
PL
Czy GOZ jest nam potrzebny i czy wdrożenie jego zasad jest możliwe oraz w jakim zakresie? W odpowiedzi na te pytania należy stwierdzić, że liczba ograniczeń jest bardzo duża. Czy idea „zero waste”, a także „100% recyklingu” i „świat bez plastiku” jest realna?
PL
Problem segregacji odpadów szczególnie w aspekcie wymogów Unii Europejskiej nabiera szczególnego znaczenia. W ostatnich latach w Polsce powstało szereg aktów prawnych dotyczących segregacji, utylizacji oraz recyklingu odpadów. W pracy omówiono sposoby katalogowania odpadów oraz plan gospodarowania odpadmi.
EN
The problem of waste segregation, in particular the aspect of requirements of the European Union, is important. Last years in Poland there have been drawn up many legal acts concerning segregation and recycling of waste. In order to facilitate presentation of the process of recovery, utilization and segregation of waste in accordance with the law, there was conducted the analysis on the basis of a small enterprise dealing with secondary raw materials’ recycling, such as waste paper, LDPE and PE foil, and PP and PS plastic company.
EN
Plastic waste is material that can not only be repeatedly processed into other products, but also the energy contained within it can be recovered through burning. This article presents an installation for the thermal utilization of waste plastics. The installation allows for the production of high energy fuel from waste polyolefin.
PL
Odpady z tworzyw sztucznych to materiał, który może być nie tylko wielokrotnie przetwarzany na inne produkty, ale również poprzez spalanie można odzyskać zawartą w nim energię. W artykule przedstawiono instalację do termicznej utylizacji odpadów z tworzyw sztucznych (poliolefin). Umożliwia ona wytworzenie dwóch wysokoenergetycznych produktów ‒ karbonizatu oraz regeneratu.
18
EN
Activated carbons are widely used in gas purification and separation, solvent recovery, wastewater treatment, etc. It is recognized that the pore structure is the most important property of activated carbons for their application in adsorption processes. Many investigations have been performed to explore novel raw materials (such as waste polymers) and to optimize the preparation conditions to obtain activated carbons with the desired porous properties. In this paper the preparation and characterization of activated carbons from poly(ethylene terephtalate), poly(methylene methacrylate), phenol/formaldehyde resin and coal-tar pitch was studied. The influence of the mass ratio pitch/polymer, carbonization conditions, as well as the activation agent used (steam, carbon dioxide, potassium hydroxide) on the characteristics of the samples were considered. The textural characteristics were studied by adsorption of gases and vapors. These allow to establish the influence of the experimental treatment parameters in the porous network of the samples. Moreover, the analysis of the adsorption data has been carried out by BET and Dubinin-Radushkevich (DR) equations as well as by the Monte Carlo (MC), Density Functional Theory (DFT) and Barrer-Joyner-Halenda’s methods. The results of these analysis were very consistent and permuted to determine the porous structure of the samples and also to identify the individual adsorption mechanism.
PL
Zwiększająca się ilość odpadowych tworzyw sztucznych stwarza wiele istotnych problemów technicznych, ekologicznych i ekonomicznych. Konieczność rozwiązywania powyższych problemów narzucają także obowiązujące przepisy prawne. Interesującym z poznawczego i utylitarnego punktu widzenia kierunkiem zagospodarowania niektórych odpadów polimerowych jest wytwarzanie z nich adsorbentów węglowych. Wysokie ceny i zmniejszająca się dostępność tradycyjnych źródeł surowcowych do produkcji adsorbentów węglowych powodują zainteresowanie możliwościami produkcji adsorbentów węglowych z surowców tańszych lub odpadowych (drewno, żywice jonowymienne, zużyte opony samochodowe, tworzywa sztuczne). Produkcja adsorbentów węglowych w powiązaniu z udoskonalaniem metod karbonizacji, aktywacji i modyfikacji może stanowić alternatywną drogę utylizacji tego typu odpadów. W pracy podjęto próbę wykorzystania odpadowego poli(tereftalanu etylenu), poli( metakrylanu metylu) i żywicy fenolowo-formaldehydowej oraz paku węglowego do otrzymywania adsorbentów węglowych. Serię kompozycji pakowo-polimerowych o różnym stosunku masowym pak/polimer poddawano karbonizacji w różnych warunkach (szybkość ogrzewania, końcowa temperatura karbonizacji, czas utrzymywania próbki w końcowej temperaturze karbonizacji), a następnie aktywacji przy użyciu różnych czynników aktywujących (para wodna, ditlenek węgla, alkalia). Teksturę porowatą uzyskanych próbek scharakteryzowano na podstawie pomiarów izoterm adsorpcji i desorpcji par azotu (77 K) oraz izoterm adsorpcji ditlenku węgla (273 K), wyznaczając wielkość powierzchni właściwej BET, parametry struktury mikroporowatej (objętość i rozkład objętości mikroporów metodą Monte Carlo i Density Functional Theory), rozkład objętości i powierzchni mezoporów wg Barrera-Joynera- Halendy. Wykazano, że rodzaj surowca, warunki karbonizacji i aktywacji oraz rodzaj czynnika aktywującego umożliwiają otrzymanie adsorbentu węglowego o pożądanym z punktu widzenia potencjalnych zastosowań rozkładzie porów.
19
Content available Research on thermal decomposition of waste PE/PP
EN
The most important and the most frequently used plastics are polyethylene (PE) and polypropylene (PP). They are characterised with high heating values (approximately 40 MJ/kg). Moreover, their chemical composition, based mainly on carbon and hydrogen, allows to use them in industrial processes. One of the methods of utilisation of plastic waste can be its use in the metallurgical industry. This paper presents results of thermal decomposition of waste PE/PP. Chemical and thermal analysis (TG) of studied wastes was carried out. Evolved gaseous products from the decomposition of wastes were indentified using mass spectrometry (TG-MS). This paper also presents an application of plastic wastes as supplemental fuel in blast furnace processes (as a substitute for coke) and as an addition in processes of coking coal.
PL
W artykule przedstawiono aspekty energetyczne procesu wytwarzania stali i scharakteryzowano stosowane paliwa alternatywne. Przedstawiono podział odpadów tworzyw sztucznych, możliwości ich ponownego wykorzystania i zagospodarowania oraz metody wykorzystania odpadów tworzyw sztucznych w procesach metalurgicznych.
EN
In this article the energy power of steel making process and alternative fuels were presented. The division of plastic waste, possibilities of its reused and their recycling were shown and methods for used of plastic waste in metallurgical processes were characterized.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.