Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microlevel models
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the implementation features of fibrous composite materials microlevel structure models constructing method that is based on Bezier curves generation and the technology of high-performance distributed computations OpenCL usage, are described for the first time, which makes a practical value. The formalized algorithm and its corresponding program code are presented.
EN
The composite materials optimal design problem which taking into account the thermal characteristics is the part of an actual structural design task. A wide range of variety of such material structures and the complexity of modeling some physical phenomena (such as the phenomenon of those structures effective characteristics percolation threshold appearing) requires a high level of detail in physico-mathematical models. Here, in this paper, were analyzed the role and place of physico-mathematical microlevel models in problems of composite materials optimal design. The methods of such materials representative volume elements construction within the model calculations, which are the key step in the modeling of complex structures variety, also were analyzed. Basing on the usage of finite element method for modeling of stationary heat conduction and elasticity linear problems was proposed the combined formalization of coupled thermoelasticity problems simulation method in complex structured composite materials, which is especially useful when used in engineering applications which provide a high level of abstraction. Basing on the analogy method and theory of similarity were developed the complex structured composite materials microlevel models, which allow one to synthesize and then re-use in the problems of composite materials optimal design, such effective thermal characteristics as thermal conduction coefficient, Young's modulus, Poisson's ratio and temperature coefficient of linear expansion. This gives the ability to avoid of classical complex mathematical homogenization processes or real experiments. The method and models were successfully implemented by using of highperformance parallel and distributed computing technologies in heterogeneous computing environments, as evidenced by the simulation results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.