Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 110

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  life cycle assessment
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
EN
Dynamically identifying key product changes is a challenge for enterprises. It is even more complicated if companies strive for the sustainable development of their activities. Therefore, the aim of the article was to develop a method to help predict the direction of product improvement, taking into account its quality level and environmental impact during the life cycle (LCA). The method was based on the design phase of LCA and the process of obtaining and processing customer expectations. Techniques supporting the developed method were: a questionnaire, a seven-point Likert scale, a standardised list of criteria for assessing the product life cycle, the WSM method, and a scale of relative states. The product analysis was carried out according to modified criteria states, which were evaluated according to: i) customer satisfaction (quality criteria), ii) environmental impact of LCA (environmental criteria), and iii) importance of quality and environmental criteria for customers. The originality of the method is to support the product improvement process to make it environmentally friendly within LCA and, at the same time, satisfactory to customers in terms of quality. The method will be used mainly by SMEs that want to initially predict the environmental impact of a product, including taking into account customer expectations.
EN
The paper presents road project issues in terms of environmental and cost analyses. Comprehensive assessment of the environmental and economic performance of engineering structures is based on quantitative environmental and economic information and draws on the results of life cycle assessment, life cycle cost and whole-life cost (WLC) analyses. The paper highlights the issue of the potential environmental impact of materials used in road construction, including those derived from the recycling process, in the context of life cycle assessment (LCA). The paper also outlines the requirements of a circular economy for the management of such materials. Attention was drawn to LCA as an important tool for obtaining comprehensive information on the environmental impact of the materials under study. Another element addressed in the paper is the topic of assessing the cost-effectiveness of road infrastructure. Attention was given to the total cost concept and the principle of cost interdependence. The problem of costs and benefits of road projects is described using the LCCA as an example. Keywords
PL
W artykule przedstawiono zagadnienia inwestycji drogowych w aspekcie analiz środowiskowych oraz kosztowych. Kompleksowa ocena środowiskowych i ekonomicznych parametrów obiektów inżynieryjnych, opiera się na ilościowych informacjach środowiskowych i ekonomicznych oraz bazuje na wynikach analizInstoceny cyklu życia, kosztach cyklu życia oraz kosztach całego życia (WLC). W artykule zwrócono uwagę na problem potencjalnego wpływu na środowisko materiałów wykorzystywanych w budownictwie drogowym, pochodzących m.in. z procesu recyklingu, w kontekście oceny cyklu życia produktu (ang. Life Cycle Assessment, LCA). W pracy przedstawiono również wymagania gospodarki o obiegu zamkniętym (ang. Circular Economy) gospodarowania tego rodzaju materiałami. Zwrócono uwagę na analizę LCA, jako istotne narzędzie, umożliwiające pozyskanie kompletnych informacji o wpływie badanych materiałów na środowisko. Kolejnym elementem poruszonym w artykule jest temat oceny efektywności kosztów infrastruktury drogowej. Zwrócono uwagę na koncepcję kosztów całkowitych i zasadę współzależności kosztów. Opisano problem kosztów i korzyści inwestycji drogowych na przykładzie LCCA.
EN
The article pertains to two elements in the architecture of a single-family house that impact the ecosystem: the use of building materials and energy consumption. The issue is considered within the framework of analyzing material and energy changes affecting the natural environment. In the research, various methods were employed, including the concept of the 'shade mechanism' as a limit for the ecological footprint, as well as the Life Cycle Assessment (LCA) method. Three types of solutions were examined: the materials used in the building structure and their energy demands. The research results presented were analyzed with regard to the relationship between building materials, energy consumption, and their negative emissions (potential greenhouse effect). The objectives of the analyses were determined with regard to the changing climate and the possibilities of controlling pollutant emissions, taking into account the ability to minimize and control the adverse environmental impact as well as its enhancement and regeneration in the architectural design process.
PL
Artykuł dotyczy dwóch elementów w architekturze domu jednorodzinnego oddziałujących na ekosystem: wykorzystanych materiałów budowlanych oraz zapotrzebowania energetycznego. Problem rozważany jest w kategorii analizy zmian materiałowych i energetycznych wpływających na przyrodę. W badaniach posłużono się m.in. ideą ‘mechanizmu klosza’, jako limitu śladu ekologicznego oraz metodą LCA. Zbadano trzy typy rozwiązań: użytych materiałów w strukturze budynku oraz ich zapotrzebowania energetycznego. Przedstawione wyniki badań przeanalizowano względem relacji wpływu materiałów budowlanych, konsumpcji energii i ich negatywnych emisji (potencjalnego tworzenia efektu cieplarnianego). Cel analiz określono ze względu na zmieniający się klimat a możliwości kontroli emisji zanieczyszczeń uwzględniając możliwości minimalizacji i kontroli negatywnego wpływu na środowisko przyrodnicze, ale także jej poprawy i regeneracji w procesie projektowym architektury.
PL
Emisje gazów cieplarnianych stanowią wyzwania środowiskowe dla obiektów budowlanych, dlatego podejmowane są działania w celu ich ograniczenia. W pracy opisano akty prawne oraz działania dotyczące zmniejszania emisji gazów cieplarnianych w budownictwie, jak również przedstawiono znaczenie techniki oceny cyklu życia (LCA) w podejściu do oceny środowiskowej budynków. Wykazano, iż ocena cyklu życia jest kluczową metodą kwantyfikacji i oceny wpływu na środowisko obiektów budowlanych, a analizy środowiskowe budynków z wykorzystaniem techniki LCA staną się istotnym elementem strategii zrównoważonego budownictwa.
EN
Greenhouse gas emissions constitute environmental challenges for buildings, which is why actions are taken to reduce them. The paper describes legal acts and activities related to reducing greenhouse gas emissions in construction, as well as the importance of the life cycle assessment (LCA) technique in the approach to the environmental assessment of buildings. It has been shown that life cycle assessment is a key method for quantifying and assessing the environmental impact of buildings, and environmental analyzes of buildings using the LCA technique will become an important element of the sustainable construction strategy.
EN
This research aims to design recommendations for improving the tofu production process in Sugihmanik Village. Over 30 tofu small medium enterprises (SMEs) generate solid and liquid waste, which pollutes the river. An eco-efficiency strategy was implemented and began by identifying the tofu production process. The life cycle assessment (LCA) method and the SimaPro software were used to calculate eco-cost and eco-efficiency levels. Based on the calculations, the eco-cost value per batch is USD 10.76. If 30 batches are produced daily, the eco-cost value in one of the tofu SMEs is USD 9.10. Tofu production has an eco-efficiency index (EEI) value of 0.12. This value shows that tofu products are only affordable but have yet to be sustainable. The researchers then recommend using biogas from wastewater treatment to replace rice husks and corncobs. This study also develops a circular economy framework in the tofu production system. The output is expected to suppress the discharge of water and solid waste to increase the EEI value of the tofu production process in the future.
EN
Closed-loop economy initiatives in Europe are still at an early stage. Progress in its implementation in industrial sectors, however, requires clarifying the concept from the perspective of balancing aspects covering environmental, economic and social issues, which may support the transformation process. Green polymer materials made from (bio)degradable, renewable, or recycled raw materials can help prevent and partially reduce waste and contribute to more sustainable life cycles. Furthermore, such materials could have a lower carbon footprint and, in some cases, may exhibit more favourable material properties in many applications. The article is an attempt to show that a systematic, standardised approach to quantifying the potential impacts of a product or process that takes from resource extraction to the end of a product life, such as life cycle assessment, can be an effective methodology for implementing sustainability in the circular economy.
PL
Inicjatywy dotyczące gospodarki o obiegu zamkniętym w Europie są wciąż na wczesnym etapie. Postęp w jej wdrażaniu w sektorach przemysłowych wymaga jednak wyjaśnienia tej koncepcji z perspektywy równoważenia aspektów obejmujących kwestie środowiskowe, ekonomiczne i społeczne, co może wspomóc proces transformacji. „Zielone” materiały polimerowe pochodzące z surowców (bio)degradowalnych, odnawialnych lub pochodzących z recyklingu mogą pomóc w zapobieganiu powstawania odpadów i częściowemu ich ograniczeniu oraz przyczynić się do bardziej zrównoważonych cykli życia. Ponadto takie materiały mogą mieć mniejszy ślad węglowy i w niektórych przypadkach mogą wykazywać korzystniejsze właściwości w wielu zastosowaniach. Celem artykuł jest wykazanie, że systematyczne, ustandaryzowane podejście do kwantyfikacji potencjalnych wpływów tych procesów począwszy od pozyskania surowców do utylizacji produktu, takie jak ocena cyklu życia, może być skuteczną metodologią wdrażania zrównoważonego rozwoju w gospodarce o obiegu zamkniętym.
PL
W artykule przedstawiono zagadnienia potencjalnego wpływu na środowisko materiałów wykorzystywanych w budownictwie drogowym, w tym również pochodzących z recyklingu, w kontekście wytycznych polityki klimatycznej i zasobooszczędnej. Zwrócono uwagę na konieczność wypracowania skutecznych działań w kierunku sprostania wyzwaniom gospodarki zrównoważonej i niskoemisyjnej. Wskazano też ocenę cyklu życia produktu (LCA), jako ważny instrument pozyskania informacji o wpływie badanych obiektów na środowisko.
EN
The article presents the issues of the potential environmental impact of materials used in road construction, including those from recycling, in the context of climate and resource-saving policy guidelines. Attention was drawn to the need to develop effective actions to meet the challenges of a sustainable and low-emission economy. The product life cycle assessment (LCA) was also indicated as an important instrument for obtaining information on the impact of the tested objects on the environment.
EN
Pesticides are at risk due to their toxic properties in humans as well as impact on the environment and ecosystems. Indonesia has 1,336 formulations and 402 pesticide ingredients registered to control pests in various commodity fields. The negative effects of synthetic chemical pesticides are resistance, resurgence, second pest blasting, and environmental degradation. Pesticide residues on the soil and agricultural products can cause bioaccumulation and biomagnification processes. The biomagnification process can cause exposure to pesticides that enter the human body to a greater degree than the residues found in the environment. Therefore, it is necessary to research the life cycle analysis of exposure and pesticide residues in agricultural environments. This study is an observational study with a cross-sectional design. The sample in this study was 120 respondents. This research was conducted in the Wanasari subdistrict, Brebes regency. Wanasari subdistrict is the largest shallot-producing centre in Brebes regency (26%). The shallot harvest area in Wanasari district is 6,598 ha. The life cycle analysis (LCA) results of shallot farming include five stages: soil maturation, planting seedlings, fertilizing, applying pesticides, and harvesting. The emissions in shallot farming activities come from diesel fuel, pesticides, and NPK fertilizers. Chlorpyrifos pesticide residues were found with an average level of 0.6451 ppm in 9 villages in Wanasari district.
EN
This review examines the economic impact of Latin American regulations, strategies, and community involvement in mitigating the detrimental effects of mismanaged municipal domestic wastewater on public health, safety, and the economy. A systematic review and meta-analysis are conducted to assess the economic potential of reclaimed water in the region, utilizing various data sources and methodologies. The findings reveal that Latin America faces challenges in wastewater treatment, regulation, and resource management, affecting the market potential of reclaimed water. However, resource recovery initiatives present economic opportunities, including cost reduction, agricultural growth, energy recovery, and resource reuse.The study also highlights the lack of sanitation and waste- water treatment coverage data in many Latin American countries. By examining the commercial possibilities, regulatory frameworks, and environmental benefits of reclaimed water, this research provides valuable insights for sustainable water management and resource recovery policymakers, practitioners, and researchers. Furthermore, it emphasizes the economic advantages of utilizing reclaimed water and biosolids in Latin America, advocating for the implementation of strong regulations and policies to promote job creation and economic growth.
EN
The production of cocoa beans in Indonesia into chocolate and other cocoa-derived products produces emissions that pollute the environment. This research aimed to calculate the carbon footprint of the cocoa agroindustry using the Life Cycle Assessment approach in Lampung, Indonesia. The LCA under study is within the scope of Cradle to Grave, starting from nurseries_cocoa plantations_dry cocoa beans_chocolate production_retail, and consumers with emission function units per 1 kg of product. The method refers to the ISO 14040:2006 life cycle assessment standard, with the stages of determining objectives and scope, inventory analysis, impact assessment, and interpretation of recommendations. Primary data was analyzed using Simapro 9.4.0.2 Software. Secondary data was collected through a literature study. Data analysis shows the highest environmental impact after normalization resulting from four activities: packaging, transportation from industry to marketing office, and transportation from marketing office to retail. The highest environmental impact is generated by industrial activities, with a total emission of 2.57E-10 per kg of dark chocolate. In this study, GWP 100a emissions from cocoa agroforestry and agroindustry activities within the scope of the Cradle to Grave study were 7.31E+01 kg CO2-eq per kg dark chocolate. In addition, selecting the type of packaging is an indicator that must be considered. Using a combination of aluminum foil, paper, and cardboard as packaging causes the second highest emission in the packaging sub-process after transportation from industry to marketing office in industrial activities. It is the 4th highest of all activities. One of the reasons for the high emissions produced in the final product or cocoa consumed by consumers is no longer in doubt. On the basis of normalization activities, the highest environmental impacts were generated by industrial activities, with a total emission of 2.57E-10. The use of packaging in packaging and fuel activities in transportation from industry to marketing office activities, industrial activities also use quite a large amount of electrical energy, namely 421.91 kWh. Recommendations for improvement can be identified to reduce the GHG impact and increase energy efficiency. Energy-saving sustainablemethods constitute a challenge for the cocoa agroindustry because they positively impact the reduction of the global warming potential.
EN
Traditional markets in Malang Regency are divided into four classes with particular classifications. The traditional market solid waste research aims to show the environmental impact of solid waste management efforts using life cycle assessment (LCA) and selected scenarios to reduce solid waste sustainably. The planned management follows four scenarios: Scenario 0 represents the baseline scenario. Scenario 1 assumes that non-composted solid waste recycling is carried out. Scenario 2 assumes that composting takes place. Finally, Scenario 3 assumes that non-composted solid waste recycling and composting are integrative ely carried out by building a reduced reuse recycle solid waste treatment facility (TPS 3R) near the market. The environmental impact analysis was carried out with various impact categories (carcinogens, respiratory organics, respiratory inorganics, climate change, radiation, ozone layer, ecotoxicity, acidification/eutrophication, land use, minerals, and fossil fuels). The results show that the smallest environmental impact is in Scenario 3 in most classes, namely the scenario where non-composted solid waste was integrative ely recycled and composted.
EN
The aim of this study is to assess the environmental performance of the manufacturing process of glass/polyester laminates as well as estimate their fire behaviour and smoke release. The Life Cycle Assessment was conducted according to the ISO14040/44 standard by using the CML-IA 2000 Baseline Midpoint method. The cone calorimeter study was conducted using a cone calorimeter method according to ISO 5660. The tests were performed under 25 kW/m2 heat flux 50 kW/m2. The results showed that according to the requirements of the Fire Test Procedure (FTP) Code examined, laminates in this form cannot be used in some applications. The LCA study showed that the highest impact is attributed to marine aquatic ecotoxicity (88.3%), with the highest contribution of the unsaturated polyester resin and the glass fibre.
PL
Celem pracy jest ocena wpływu procesu produkcji laminatów poliestrowo-szklanych na środowisko oraz ocena ich zachowania w warunkach pożaru. Ocenę cyklu życia przeprowadzono zgodnie z normą ISO14040/44, stosując metodę CML-IA 2000 Baseline. Badania kalorymetryczne przeprowadzono metodą kalorymetru stożkowego zgodnie z normą ISO 5660. Badania przeprowadzono przy gęstościach strumienia promieniowania cieplnego równych 25 kW/m2 i 50 kW/m2. Wyniki wykazały, że zgodnie z wymaganiami międzynarodowego kodeksu stosowania procedur prób ogniowych badane laminaty w tej postaci nie spełniają wymagań dotyczących niektórych zastosowań. Ocena cyklu życia wykazała, że proces produkcji laminatów oddziałuje w największym stopniu na toksyczność wody morskiej (88.3%), przy największym udziale nienasyconej żywicy poliestrowej i włókna szklanego.
EN
The focal theme of this study is to evaluate the life cycle of asphalt mix containing Jordanian oil shale ash (OSA). Life cycle assessment (LCA) approach was conducted to assess the environmental impact of all manufacturing stages of the asphalt mix from Global warming potential (GWP) and energy consumption (EC) perspectives. The documentation for the LCA study was done in accordance with ISO 14044:2006 standards for the research’s goal and scope, inventory analysis, impact assessment, and interpretation. The results revealed that replacing the asphalt mix partially with Jordanian OSA (10 wt.%) resulted in slight reduction in both GWP and EC. A reduction of 2.83% and 4.8% for GWP and EC, respectively, was obtained.
EN
Solar photovoltaics systems (PV) deliver substantial benefits to the environmental when compared with the conventional energy sources, hence supporting to the human activities ecological benefits with sustainable development. To maintain the quality of the environment at the same time, technological innovations are very much essential to cater the needs of more electrical power according to the demand, decreasing carbon emission by replacing the carbon releasing fossil fuels with the renewable energy. Installation of such facilities require lakhs acres of land globally and thus leads to number of various ecological issues. This paper presents the insight to various environmental issues. Some of the issues are with respect to land, health of human beings, animals, plant lives and environment are presented in this paper. In terms of numbers, the area of land required for a PV system is less or same per kWh power generated, when compared with a thermal power station. Deforestation for installation of solar PV systems is one of the major drawback as it leads to enormous environmental impacts. This paper analyses effects on the environment due to the usage of solar PV systems like, at the time of construction, installation and also at the time of destruction, sound and visual incursions, air, water and soil pollution, emission of greenhouse gases, effects on archaeological sites accidents to unskilled labor, and various socio-economic impacts. Subsequently, reduction in greenhouse effect, carbon footprints, global warming, ozone layer depletion, climate change and acid rains are some of the positive impacts during transition to green energy, i.e., usage of fuels from fossil fuels to solar energy at regional level, national level and global level. This paper outlines the pros and cons, positive and negative environmental impacts, by using solar PV systems to generate electrical power.
EN
The aim of the article is the material and economic assessment of the life cycle of city buses with combustion engines. As part of the analysis, the analyzed parameters were optimized using neural networks with the use of a regression model. As part of the life cycle assessment criteria, three types of Solaris Urbino buses were analyzed. As a result of the research carried out for buses, the results were obtained regarding the optimal duration of operation, the number and cost of oil, air and fuel filter changes, and the replacement period of buses. The presented research and analyzes have a significant impact on the processes of purchasing and operating city buses.
EN
The research aims to find an effective way to reduce real-world CO2 emissions of passenger vehicles, by answering the question of what kind of vehicles in various countries generates the smallest carbon footprint. Emissions were calculated for vehicles from three of the most popular segments: small, compact, and midsize, both with conventional body and SUVs. Each type of vehicle was analyzed with various types of powertrain: petrol ICE (internal combustion engine), diesel ICE, LPG ICE, petrol hybrid, LPG hybrid and BEV (battery electric vehicle) with four different carbon intensity of electric energy source. The final conclusion provides guidelines for environmentally responsible decision-making in terms of passenger vehicle choice.
EN
The aim of the article is to analyze the impact of operation on the life cycle assessment of city buses with diesel and electric drive using neural networks based on source data. Two types of diesel buses and two types of electric buses were tested. As a result of the conducted tests, the following optimal values were obtained for buses: operation time, number of inspections, daily refueling time or battery charging time, general efficiency, emissions. The adopted values of the life cycle assessment criteria are optimal for electric and electric city buses. The presented research and analyzes have a significant impact on the processes related to the organization of public transport.
EN
This paper attempts to conduct a comparative life cycle environmental analysis of alternative versions of a product that was manufactured with the use of additive technologies. The aim of the paper was to compare the environmental assessment of an additive-manufactured product using two approaches: a traditional one, based on the use of SimaPro software, and the authors’ own concept of a newly developed artificial intelligence (AI) based approach. The structure of the product was identical and the research experiments consisted in changing the materials used in additive manufacturing (from polylactic acid (PLA) to acrylonitrile butadiene styrene (ABS)). The effects of these changes on the environmental factors were observed and a direct comparison of the effects in the different factors was made. SimaPro software with implemented databases was used for the analysis. Missing information on the environmental impact of additive manufacturing of PLA and ABS parts was taken from the literature for the purpose of the study. The novelty of the work lies in the results of a developing concurrent approach based on AI. The results showed that the artificial intelligence approach can be an effective way to analyze life cycle assessment (LCA) even in such complex cases as a 3D printed medical exoskeleton. This approach, which is becoming increasingly useful as the complexity of manufactured products increases, will be developed in future studies.
PL
Pełna neutralność klimatyczna oraz dekarbonizacja gospodarki, to kluczowe cele Unii Europejskiej do 2050 roku. Sektor budowlany jest jednym z najważniejszych elementów w drodze do osiągnięcia tych celów, z uwagi na to, że odpowiada za 36% emisji gazów cieplarnianych powiązanych ze zużyciem energii. Efektywnym narzędziem służącym do monitorowania emisji gazów cieplarnianych w sektorze budownictwa jest ślad węglowy. W artykule poddano analizie wymagania prawne dotyczące obliczania śladu węglowego budynków w krajach, które posiadają szczegółowe przepisy w tym zakresie - Danii, Finlandii, Francji, Holandii i Szwecji.
EN
Full climate neutrality and decarbonization of the economy are key goals of the European Union by 2050. The construction sector is one of the most important elements on the way to achieving these goals, given that it accounts for 36% of greenhouse gas emissions linked to energy consumption. An effective tool for monitoring greenhouse gas emissions in the construction sector is the carbon footprint. The article analyzes the legal requirements for calculating the carbon footprint of buildings in countries that have specific regulations in this regard - Denmark, Finland, France, the Netherlands and Sweden.
EN
This study analysed the greenhouse gas (GHG) emissions of hydrogen fuel cell vehicles’(FCEVs’) life cycles. These included models running on hydrogen derived from coke oven gas (COG), which is a by-product of the coking process of coal and includes hydrogen, methane, and other gases. FCEVs and hydrogen have the potential to drive future mobility. Hydrogen can be separated from the COG in the process of pressure swing adsorption to obtain a purity of hydrogen that meets the requirements of a hydrogen FCEV. An environmental life cycle assessment (LCA) of FCEV powered by hydrogen produced from Polish COG was conducted. The direction of hydrogen production strategies in Poland was also presented. The analyses included the entire life cycle of FCEVs with the production of hydrogen from COG in a Polish coke plant. A comparative analysis of FCEVs and other alternative fuels was conducted, and the main determinants of GHG emissions of FCEV were given. Importantly, this is the first attempt at an environmental assessment of FCEVs in Poland.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.