Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  journal plane bearing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Materials engineering and tribology development helps to introduce oils with the compound structure (together with micropolar structure) as a lubricating factors. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modelling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure, velocity and velocity of microrotation distribution in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid Lambda 1. Differences were showed on graphs in the schedule of the longitudinal velocity oils after the height of the gap in the flow of the micropolar and Newtonian liquid. In presented flow, the influence of lubricating fluid inertia force and the external elementary body force field were omitted. Presented calculations are limited to isothermal models of bearing with infinite breadth.
PL
W pracy przedstawiono rozwiązanie numeryczne równania Reynoldsa opisującego laminarny, stacjonarny przepływ oleju smarującego o strukturze mikropolarnej w płaskim łożysku ślizgowym. Założono stałą gęstość oraz lepkości dynamiczne oleju mikropolarnego. Wyniki przedstawiono w postaci rozkładu ciśnienia, jego wartości maksymalnej w zależności od liczby sprzężenia N2 oraz bezwymiarowego parametru długości Λ1 cieczy mikropolarnej. Rozwiązanie dotyczy izotermicznego modelu łożyska o nieskończonej szerokości.
EN
The paper presents results of numerical solution of the Reynolds equation for laminar, steady oil flow in a slide bearing gap. Lubrication oil is fluid with micropolar stucture. The results of hydrodynamic pressure are shown on the diagrams in dimensionless form. They depend on the coupling number N2 and characteristic dimensionless length of micropolar fluid Λ1. Presented calculations are limited to isothermal models of bearing with infinite breadth.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modeling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure in dimensionless form in dependence on coupling number N2 and characteristic dimensionless length of micropolar fluid Λ1. Presented calculations are limited to isothermal models of bearing with infinite breadth.
EN
Present paper shows the results of numerical solution Reynolds equation for laminar, steady oil flow in slide plane bearing gap. Lubrication oil is fluid with micropolar structure. Properties of oil lubrication as of liquid with micropolar structure in comparison with Newtonian liquid, characterized are in respect of dynamic viscosity additionally dynamic couple viscosity and three dynamic rotation viscosity. Under regard of build structural element of liquid characterized is additionally microinertia coefficient. In modelling properties and structures of micropolar liquid one introduced dimensionless parameter with in terminal chance conversion micropolar liquid to Newtonian liquid. The results shown on diagrams of hydrodynamic pressure in dimensionless form in dependence on coupling number N and characteristic dimensionless length of micropolar fluid A1. Presented calculations are limited to isothermal models of bearing with inflnite breadth. Especially, geometry schema of the slide Journal plane bearing gap, the dimensionless pressure distributions p1 in dependence on coupling number N2, the dimensionless pressure distributions p1 in dependence on characteristic dimensionless length of micropolar fluid, the dimensionless maximal pressure p1m in dependence on coupling number N, gap convergence coefficient are presented in the paper.
EN
This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in slide journal bearing with planar linear gap. This solution example apply to isothermal bearing model with infinity breadth. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. It shows a preliminary analysis change of pressure and capacity forces in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modeling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. Results are presented in the dimensionless hydrodynamic pressure and capacity force diagrams.
EN
This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in slide journal bearing with planar linear gap. Discussed case of the solution to the Reynolds equation for the unsteady laminar Newtonian flow of lubricating factor allows initial estimation of hydrodynamic pressure distribution and its capacity as a basic operational parameter of the slide bearing. Unsteady axial velocity perturbation on the race surface and slide has influence on the hydrodynamic pressure distribution of the capacity of the lubricated gap. Pressure changes in the bearing are seasonal and equal to the lasting period of velocity perturbation. The level of changes and its nature depends on the kind of perturbation. This solution example applies to isothermal bearing model with infinity length. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. It shows a preliminary analysis change of capacity forces in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modeling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. Results are presented in the dimensionless hydrodynamic pressure and capacity force diagrams.
PL
W artykule przedstawiono wyniki rozwiązania zmodyfikowanego równania Reynoldsa opisującego laminarny niestacjonarny przepływ czynnika smarującego w szczelinie smarnej płaskiego poprzecznego łożyska ślizgowego. Analizowano łożysko płaskie o liniowo zbieżnej wysokości szczeliny smarnej. Uwzględniono niestacjonarne zaburzenia prędkości przepływu oleju na powierzchni bieżni i suwaka łożyska. Wyniki rozwiązania dotyczą izotermicznego modelu łożyska o nieskończonej szerokości smarowanego olejem o własnościach newtonowskich i lepkości dynamicznej zależnej od ciśnienia. Periodyczne zaburzenia prędkości wzdłuż szczeliny smarnej mogą być spowodowane drganiami wzdłużnymi elementów łożyska: bieżni i suwaka. Przedstawiono analityczną postać rozkładu ciśnienia całkowitego oraz jego zmian podczas trwania zaburzeń prędkości. Analizowano także siłę nośności hydrodynamicznej łożyska oraz zmianę jej położenia na długości suwaka spowodowaną zaburzeniami prędkości oleju. Obliczone wielkości porównano z analogicznymi wielkościami w przypadku smarowania olejem o stałej lepkości dynamicznej. Wyniki uzyskanych rezultatów przedstawiono w postaci bezwymiarowej, co umożliwia ich uniwersalne wykorzystanie przy wstępnych obliczeniach inżynierskich płaskich poprzecznych łożysk ślizgowych.
EN
This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in slide journal bearing with planar linear gap. Laminar unsteady oil flow is performed during periodic and unperiodic perturbations of bearing load or is caused by the changes of gap height in time. Above perturbations occur mostly during the starting and stopping of machine. This solution example apply to isothermal bearing model with infinity breadth. Lubrication oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. It shows a preliminary analysis of pressure distribution change and capacity forces in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modelling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. During modelling crossbar bearing operations in combustion engines, bearing movement perturbations from engine forced vertical vibrations causes velocity flow perturbations of lubricating oil on the bearing race and on the bearing slider in the longitudinal direction. The determined pressure distribution and capacity forces were represented in dimensionless form.
PL
W artykule przedstawiono wyniki rozwiązania zmodyfikowanego równania Reynoldsa opisującego laminarny niestacjonarny przepływ oleju smarującego w szczelinie smarnej płaskiego poprzecznego łożyska ślizgowego o liniowo zbieżnej wysokości szczeliny smarnej. Uwzględniono niestacjonarne zaburzenia prędkości przepływu oleju na powierzchni bieżni i suwaka łożyska. Wyniki rozwiązania dotyczą izotermicznego modelu łożyska o nieskończonej szerokości smarowanego olejem o lepkości dynamicznej zależnej od ciśnienia.
EN
This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil flow in slide journal bearing with planar linear gap. Laminar unsteady oil flow is performed during periodic and unperiodic perturbations of bearing load or is caused by the changes of gap height in time. Above perturbations occur mostly during the starting and stopping of machine. Presented problems of unsteady, laminar flow in bearing gap issue, in which modified Reynolds number Re* is smaller or equal to 2. This flows are also determined by Taylor number Ty, which is smaller or equal to 41,1. Increasing of criteria numbers causes firstly conversion into unsteady laminar-turbulent flows and later conversion into turbulent flows. This solution example apply to isothermal bearing model with infinity breadth. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. It shows a preliminary analysis of pressure distribution change and capacity forces in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modeling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. During modelling crossbar bearing operations in combustion engines, bearing movement perturbations from engine forced vertical vibrations causes velocity flow perturbations of lubricating oil on the bearing race and on the bearing slider in the longitudinal direction. The determined pressure distribution and capacity forces were represented in dimensionless form.
EN
This paper shows results of numerical solutions a modified Reynolds equation for laminar unsteady oil flow in slide journal plane bearing gap. It shows a preliminary analysis of pressure distribution change in the bearing by laminar, unsteady lubrication caused by velocity perturbations of oil flow in the longitudinal direction of a bearing. Described effect can be used as an example of modelling the bearing friction node operations in reciprocating movement during exploitation of engines and machines. Plane crossbar journal bearing occur in ship combustion engine as a crosshead bearing. During modelling crossbar bearing operations in combustion engines, bearing movement perturbations from engine vertical vibrations causes velocity flow perturbations of lubricating oil on the bearing race and on the bearing slider in the longitudinal direction. Engine forced vertical vibrations frequency and crankshaft forced torsional vibrations is determined by shaft rotational speed, engine cylinder number and by engine type. This solution example applies to isothermal bearing model with infinity length. Lubricating oil used in this model has Newtonian properties and dynamic viscosity in dependence on pressure. Results are presented in the dimensionless hydrodynamicpressure diagrams.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.