Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  intrinsic vulnerability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Groundwater is a vital resource for domestic, agricultural, and industrial activities, as well as for ecosystem services. Despite this, the resource is under significant threat, due to increasing contamination from anthropogenic activities. Therefore, to ensure its reliability for present and future use, effective management of groundwater is important not only in terms of quantity (i.e. abstraction) but also quality. This can be achieved by identifying areas that are more vulnerable to contamination and by implementing protective measures. To identify the risk and delineate areas that are more exposed to pollution, various groundwater vulnerability assessment techniques have been developed across the globe. This paper presents an overview of some of the commonly used groundwater vulnerability assessment models in terms of their unique features and their application. Special emphasis is placed on statistical methods and overlay-index techniques. The assessment of the literature shows that statistical methods are limited in application to the assessment of groundwater vulnerability to pollution because they rely heavily on the availability of sufficient and quality data. However, in areas where extensive monitoring data are available, these methods estimate groundwater vulnerability more realistically in quantitative terms. Many works of research indicate that index-overlay methods are used extensively and frequently in groundwater vulnerability assessments. Due to the qualitative nature of these models, however, they are still subject to modification. This study offers an overview of a selection of relevant groundwater vulnerability assessment techniques under a specific set of hydro-climatic and hydrogeological conditions.
EN
Groundwater is a very important natural resource to support the activities of the residents of Pakis District, Malang Regency. On the other hand, increased activity puts pressure on groundwater quality. Agricultural intensification, urbanisation, and industrialisation can be sources of pollutants. Hydrological factors, topography, lithology, and surrounding rainfall are triggers for contamination of groundwater. The main objective of this research is to determine the characteristics, quality of groundwater, and its susceptibility to pollution. To complete this research, geoelectric measurements were carried out at 43 points spread throughout the study area and sampling of 18 shallow wells in agricultural, residential, and industrial areas for chemical analysis. All data obtained were analysed to create a map of the spatial distribution of groundwater vulnerability. The results show that the groundwater in the study location is in the transition zone and flows through the volcanic rock layers. The level of groundwater pollution is in the uncontaminated status to heavily polluted with pollutants in the form of heavy metal manganese and Escherichia coli bacteria. The spatial distribution of groundwater intrinsic vulnerability shows low, moderate, and high levels of vulnerability, respectively 32.99%, 60.87%, and 6.14% of the research area. Groundwater specific vulnerability associated with land use factors shows that 26.25% are negligible, 42.46% are low, and 31.29% are moderate. From this it can be concluded that the study area has been polluted both geogenically and anthropogenically, therefore, special actions must be taken to restore the quality of groundwater.
EN
We analyse the factors used for assessing groundwater intrinsic vulnerability to pollution in the mean residence time estimation method, providing a final vulnerability evaluation. The following factors were analysed: depth to shallow groundwater, effective precipitation infiltration coefficient, terrain inclination, volumetric water content of soils and rocks in the unsaturated zone and volumetric water content of the topsoil. GIS surveys were performed for two geomorphologically diverse regions: a highland piedmont and a lowland plain in Poland (Central Europe). In both cases, groundwater had spatially diverse vulnerability to contamination. The research method used relied on determining the percentage participation of the area with particular values of the parameters analysed in areas of different degrees of vulnerability. Knowledge of the extent and distribution of variability of the parameters analysed in areas of particular degrees of vulnerability helps explain the causes of spatial variation in groundwater intrinsic vulnerability to contamination in given areas.
EN
Aquifer vulnerability maps are valuable tools for communicating concerns about the level of groundwater pollution hazard to local landuse planners and to the general public. Groundwater vulnerability to contamination in the Kampinoski National Park (KNP) area in central Poland was evaluated as a basis for developing appropriate protection strategy for the groundwater resources and management in recreation areas located near Warsaw. Assessment was accomplished using U.S. EPA DRASTIC and the residence time in the unsaturated zone of a conservative pollutant. The final DRASTIC values have been grouped into medium (37 % of area) and medium high (52 %) intrinsic vulnerability categories. The residence time in the unsaturated zone is classified in 11 intervals, ranging from 30 days to 30 years, but nearly 75 % of the study area is characterized by intervals from 1 to 3 years.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.