Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  identification of microorganisms
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Szybkie wykrycie i identyfikacja drobnoustrojów występujących w żywności jest głównym celem dla laboratoriów mikrobiologicznych. W ostatnich latach klasyczne metody analizy mikrobiologicznej są uzupełniane o nowoczesne metody analityczne i molekularne. W niniejszym artykule omówiono następujące metody: fluorescencyjną hybrydyzację in situ (FISH), metody PCR i RT-PCR, spektrometrię masową MALDI-TOF i cytometrię przepływową. Opisano również zasadę działania i dobór podłoży chromogennych służących do wykrywania i identyfikacji drobnoustrojów w produktach spożywczych.
EN
The rapid detection and identification of microorganisms found in food is the main goal for microbiology laboratories. In recent years, classical methods of microbiological analysis have been supplemented with modern analytical and molecular methods. This article discusses the following methods: fluorescence in situ hybridization (FISH), PCR and RT-PCR methods, MALDI-TOF mass spectrometry and flow cytometry. The principle of operation and the selection of chromogenic media for their detection and identification of microorganisms in food products are also described.
EN
The biofiltration process in the biologically activated carbon filters (BAC) is one of advanced methods of water treatment. It enables efficient elimination of dissolved organic matter and some inorganic pollutants. The production of high-quality drinking water requires an appropriate method of filter work control based on biofilm growth assessment. The first aim of the study was to assess the microbial development in beds of two BAC filters with the use of various methods. The second aim was to compare the obtained results and indicate the method which could support filter operators during routine control of biofiltration process. The study was carried out in a pilot scale on models of BAC filters during two filter runs. The analysis of microorganisms was performed in water samples collected from different depths of the filter beds with the use of culture method (HPC), metabolic activity assay (with the FDA), epifluorescence microscopy – total cell count method (TCC) and biochemical method (system Vitek 2 Compact). No statistical correlation between HPC and metabolic activity assay was noted. Total bacteria number determined with the use of TCC was approx. 100–900 times higher than in the HPC method. The biochemical tests revealed the presence of several Gram-negative species. The comparison of the applied methods shows that microbial activity assay is the most useful, fast and low-cost method which may be applied additionally to the HPC method at standard water treatment plant laboratory.
EN
The research was carried out on the full scale Water Treatment Plant with maximal capacity of 150 000 m3/d. Treated water is characterized by a high content of organic pollutants. In order to eliminate them from water and ensure the biological stability of water in the water supply network, in January 2015 a second stage of water treatment was launched, based on integrated ozonation and filtration through carbon filter beds. Between January and May 2016, samples of water and a filter bed were collected from four carbon filters and then physicochemical and bacteriological analysis were done. The FDA test and biochemical diagnostics were made to prove the microbiological activity of the filter bed. The studies showed a decrease in the content of organic compounds, meassured as TOC and COD (KMnO4), and the biological activity of the analyzed carbon filters. The carbon filter beds were populated by Pseudomonas fluorescens, Acinetobacter lwoffii, Aeromonas salmonicida and Sphingomonas paucimobilis. In none of the analyzed filters were found strains of the Enterobacteriaceae family which may have a potential threat to health of the consumers. The application of carbon filters has reduced the organic matter content in treated water.
PL
Badania prowadzono w skali technicznej na Stacji Uzdatniania Wody (SUW) o maksymalnej wydajności 150 000 m3/d. Woda dopływająca do SUW charakteryzuje się zawartością specyficznych zanieczyszczeń organicznych. W celu ich eliminacji z wody oraz zapewnienia biologicznej stabilności wody w sieci wodociągowej, w styczniu 2015 r. uruchomiono drugi stopień oczyszczania wody, oparty o zintegrowane procesy ozonowania i filtracji przez złoże węglowe. Co miesiąc, w okresie od stycznia do maja 2016 r., pobierano próbki wody oraz złoża filtracyjnego z czterech filtrów węglowych. Próbki wody pobierano bezpośrednio znad złoża filtracyjnego oraz na odpływie z filtrów. Próbki złoża filtracyjnego pobierano z jego górnej warstwy, w pięciu punktach każdej komory filtracyjnej. Przeprowadzono analizy fizyczno-chemiczne i bakteriologiczne wody oraz złóż filtracyjnych. W celu wykazania aktywności mikrobiologicznej złóż wykonywano test aktywności esteraz z dwuoctanem fluoresceiny FDA. W próbkach wody i węgla aktywnego w celu zidentyfikowania mikroorganizmów prowadzono diagnostykę biochemiczną z wykorzystaniem zautomatyzowanego systemu Vitek 2 Compact (bioMerieux). Przeprowadzone badania wykazały obniżenie zawartości związków organicznych wyrażonych jako OWO i ChZT (KMnO4) oraz biologiczną aktywność analizowanych filtrów węglowych. Złoża filtrów węglowych zasiedlone były przez Pseudomonas fluorescens, Acinetobacter lwoffii, Aeromonas salmonicida oraz Sphingomonas paucimobilis. W żadnym z analizowanych filtrów nie wyhodowano natomiast szczepów z rodziny Enterobacteriaceae stanowiących potencjalne zagrożenie dla zdrowia konsumentów.Wprowadzenie filtrów węglowych do ciągu technologicznego SUW spowodowało obniżenie zawartości materii organicznej w wodzie uzdatnionej.
PL
Badania prowadzono w skali technicznej na Stacji Uzdatniania Wody (SUW) o maksymalnej wydajności 150 000 m3/d. Woda dopływająca do SUW charakteryzuje się zawartością specyficznych zanieczyszczeń organicznych. W celu ich eliminacji z wody oraz zapewnienia biologicznej stabilności wody w sieci wodociągowej, w styczniu 2015 r. uruchomiono drugi stopień oczyszczania wody, oparty o zintegrowane procesy ozonowania i filtracji przez złoże węglowe. Co miesiąc, w okresie od stycznia do maja 2016 r., pobierano próbki wody oraz złoża filtracyjnego z czterech filtrów węglowych. Próbki wody pobierano bezpośrednio znad złoża filtracyjnego oraz na odpływie z filtrów. Próbki złoża filtracyjnego pobierano z jego górnej warstwy, w pięciu punktach każdej komory filtracyjnej. Przeprowadzono analizy fizyczno-chemiczne i bakteriologiczne wody oraz złóż filtracyjnych. W celu wykazania aktywności mikrobiologicznej złóż wykonywano test aktywności esteraz z dwuoctanem fluoresceiny FDA. W próbkach wody i węgla aktywnego w celu zidentyfikowania mikroorganizmów prowadzono diagnostykę biochemiczną z wykorzystaniem zautomatyzowanego systemu Vitek 2 Compact (bioMerieux). Przeprowadzone badania wykazały obniżenie zawartości związków organicznych wyrażonych jako OWO i ChZT (KMnO4) oraz biologiczną aktywność analizowanych filtrów węglowych. Złoża filtrów węglowych zasiedlone były przez Pseudomonas fluorescens, Acinetobacter lwoffii, Aeromonas salmonicida oraz Sphingomonas paucimobilis. W żadnym z analizowanych filtrów nie wyhodowano natomiast szczepów z rodziny Enterobacteriaceae stanowiących potencjalne zagrożenie dla zdrowia konsumentów. Wprowadzenie filtrów węglowych do ciągu technologicznego SUW spowodowało obniżenie zawartości materii organicznej w wodzie uzdatnionej, co znacznie obniżyło zapotrzebowanie na środek stosowany do dezynfekcji wody.
EN
The research was carried out on the full scale Water Treatment Plant with maximal capacity of 150 000 m3/d. Treated water is characterized by a high content of organic pollutants. In order to eliminate them from water and ensure the biological stability of water in the water supply network, in January 2015 a second stage of water treatment was launched, based on integrated ozonation and filtration through carbon filter beds. Between January and May 2016, samples of water and a filter bed were collected from four carbon filters and then physicochemical and bacteriological analysis were done. The FDA test and biochemical diagnostics were made to prove the microbiological activity of the filter bed. The studies showed a decrease in the content of organic compounds, meassured as TOC and COD (KMnO4), and the biological activity of the analyzed carbon filters. The carbon filter beds were populated by Pseudomonas fluorescens, Acinetobacter lwoffii, Aeromonas salmonicida and Sphingomonas paucimobilis. In none of the analyzed filters were found strains of the Enterobacteriaceae family which may have a potential threat to health of the consumers. The application of carbon filters has reduced the organic matter content in treated water, which significantly reduced the dose of disinfectant.
EN
A study of effectiveness of organic compounds removing from the water was carried out in the pilot scale. Filter column with 100 mm diameter and 3 m height was filled with activated carbon WG-12 at the height of 2.1 m and placed in a water jacket. The water jacket was made with a pipe with the diameter of 140 mm, wherein water with the same temperature as filtered water, flows from top to bottom of jacket at all times. Activated carbon was biologically "inoculated" with backwash water taken from the carbon filters from existing Water Treatment Plant. Water samples were collected at the inlet and in the vertical profile of filter column. Following factors were analyzed in all samples: temperature, pH, dissolved oxygen, alkalinity, COD (KMnO4), UV254 absorbance, TOC, total number of mesophilic and psychrophilic bacteria. In some water samples, biochemical diagnostics were performed using an automated system Vitek 2 Compact (bioMerieux), in order to identify microorganisms. Samples of bed were also collected in the vertical profile of the filter to determine the total number of mesophilic and psychrophilic bacteria. Studies showed relatively short time of biological activation of filter bed, which undoubtedly was an effect of the proper preparation of the bed and conditions of the process (contact time, the optimum temperature and pH, and sufficient content of organic substances which was the nutrients for bacteria). Activated carbon WG-12, which was used during the studies, was a very good base for the growth of microorganisms in the filter bed. Microbial activity of filter was confirmed by indicator EMS which amounted to <1 and bacteriological analysis of water and the bed. The content of organic compounds in the water during filtration through a biologically active carbon bed decreased along to depth of filter. The lowering of organic compounds amount at higher depths of the filter bed was correlated with the growing amount of mesophilic and psychrophilic bacteria in the bed. In a vertical cross section of the filter Pseudomonas putida, Pseudomonas aeruginosa, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter baumannii, Acinetobacter calcoaceticus have been identified. Due to the fact that Pseudomonas putida and Pseudomonas aeruginosa are the bacteria responsible for the decomposition of organic compounds, their presence undoubtedly contributed to the reduction of biodegradable fraction of organic matter present in the filtered water.
PL
Badając nowe środowiska, coraz cześciej znajdujemy nowe gatunki, których nie jesteśmy w stanie prostymi metodami mikro- i makroskopowymi czy też biochemicznymi zaliczyć do żadnej ze znanych nam grup. Bardzo czesto znajdujemy się również w sytuacji, w której musimy szybko oznaczyć grupę mikroorganizmów co do gatunku i określić ich wzajemne pokrewieństwo oraz zidentyfikować przynależność gatunkową. Bardzo dobrym i szybkim sposobem na rozwiązanie tych naukowych wyzwań jest wykorzystanie genetyki do szybkiej i pewnej identyfikacji badanych szczepów. W efekcie możemy stworzyć drzewo filogenetyczne, które jest wizualizacją analizy porównawczej badanych przez nas sekwencji oraz niesie ze sobą wiele informacji na temat podobieństwa badanych organizmów i ewolucyjnych zależności pomiędzy nimi.
EN
While studying new environments, more and more frequently we find new species which cannot be classified into any of the groups known to us using simple micro-, macroscopic , or biochemical methods. We also freqently find our regarding its species, as well as determine their mutual kinship and identity species affiliation. A very good and quick way to solve these scientific challenges is to use genetics for quick and certain identification of the studied strains. As a result we can create a phylogenetic tree, which constitutes a visualization of the comparative analysis of the sequences studied organisms and evolutional dependencies between them.
PL
Badając nowe środowiska, coraz częściej znajdujemy nowe gatunki, których nie jesteśmy w stanie prostymi metodami mikro- i makroskopowymi czy też biochemicznymi zaliczyć do żadnej ze znanych nam grup. Bardzo często znajdujemy się również w sytuacji, w której musimy szybko oznaczyć grupę mikroorganizmów co do gatunku i określić ich wzajemne pokrewieństwo oraz zidentyfikować przynależność gatunkową. Bardzo dobrym i szybkim sposobem na rozwiązanie tych naukowych wyzwań jest wykorzystanie genetyki do szybkiej i pewnej identyfikacji badanych szczepów. W efekcie możemy stworzyć drzewo filogenetyczne, które jest wizualizacją analizy porównawczej badanych przez nas sekwencji oraz niesie ze sobą wiele informacji na temat podobieństwa badanych organizmów oraz ewolucyjnych zależności pomiędzy nimi.
EN
While studying new environments, more and more frequently we find new species which cannot be classified into any of the groups known to us using simple micro-, macroscopic, or biochemical methods. We also frequently find ourselves in a situation in which we need to mark the group of microorganisms quickly regarding its species, as well as determine their mutual relationship and identify species affiliation. A very good and quick way to solve these scientific challenges is to use genetics for quick and certain identification of the studied strains. As a result we can create a phylogenetic tree, which constitutes a visualization of the comparative analysis of the sequences studied by us and brings a lot of information regarding the similarity of the studied organisms and evolutional dependencies between them.
PL
Metoda identyfikacji drobnoustroju chorobotwórczego powinna odznaczać się wysoką czułością, a przede wszystkim wynik powinien być uzyskany w jak najkrótszym czasie, by jak najszybciej dobrać i włączyć odpowiednią terapię. Obecnie zastosowanie technik molekularnych umożliwia identyfikację mikroorganizmów niezależnie od tradycyjnych mikrobiologicznych metod hodowlanych lub serologicznych, czego zdecydowanymi zaletami są większa czułość i swoistość oraz znaczne skrócenie czasu procedur identyfikacji mikroorganizmów.
EN
Identification methods of pathogenic microorganism should be efficient, specific and have high sensitivity. What is significant it is a time of pathogen identification, quickly obtaining the results enables to apply an appropriate antimicrobial therapy. Currently the molecular methods allows to identification of microorganism regardless of traditional breeding or serological methods. The main advantage of molecular techniques in identification of bacteria is higher sensitivity and specificity than conventional methods and significant shortening of time of diagnostic procedures for bacterial pathogens.
PL
Czas oczekiwania na wyniki badań mikrobiologicznych zależy od czasu trwania etapu hodowli. Dzięki zastosowaniu nowoczesnych metod badawczych można skracać czas trwania kolejnych etapów badania mikrobiologicznego, a tym samym czas oczekiwania na wyniki. Nową metodą umożliwiającą szybką identyfi kację drobnoustroju jest metoda spektrometrii masowej oparta na analizie składu białek wewnątrzkomórkowych.
EN
Time required to get results in microbiological diagnostics depends on the duration of the stage of culture. Due to new testing methods, it is possible to reduce time of next steps of microbiology testing, and also the waiting time for results.The new metod for rapid microorganisms identifi cation is mass spektrometry based on the analysis of intracellular protein composition.
PL
Prawidłowa identyfikacja mikroorganizmów w laboratorium ma szczególne znaczenie; pozwala na właściwą diagnozę i podjęcie skutecznych działań w leczeniu lub usunięciu ich z otoczenia. Obecność wielu różnych drobnoustrojów zmusza do stosowania rozmaitych metod analitycznych. Nowoczesne procedury z wykorzystaniem zróżnicowanej aparatury znacznie skracają czas oczekiwania na wyniki. W ostatnich latach jest to priorytet we wszystkich dziedzinach, w których ma się styczność z mikroorganizmami, zwłaszcza z drobnoustrojami chorobotwórczymi.
EN
The correct identification of microorganisms in the laboratory is of special importance, it allows to proper diagnosis and taking effective actions for the treatment or removing the microorganisms from the environment. The presence of many different microorganisms forces to use different analytical methods. Modern methods using diversifed apparatus decreases waiting time for the results. In last years it become a priority, in all fields where the presence of microorganisms, especially pathogenic microorganisms is significant.
PL
Spektrometria MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) jest szybką i wiarygodną metodą klasyfikacji i identyfikacji mikroorganizmów, stosowaną w diagnostyce klinicznej, badaniach środowiskowych i taksonomicznych czy kontroli jakości w przemyśle spożywczym. Współczesne systemy spektrometrii MALDI-TOF umożliwiają wykonanie analizy pozwalającej na jednoznaczną identyfikację bakterii, drożdży czy grzybów w ciągu kilku minut.
EN
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) fingerprinting is fast and reliable method for the classification and identification of microorganisms, with applications in clinical diagnostics, environmental and taxonomical research, or food-processing quality control. Modern MALDI-TOF MS fingerprinting systems allows researchers to perform this process for the unambiguous identification of bacteria, yeasts and fungi in minutes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.