Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydrological modeling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Streamflow modelling is crucial for developing successful long-term management, soil conservation planning, and water resource management strategies. The current work attempts to develop a robust hydrological model that simulates streamflow with the slightest uncertainty in the calibration parameters. A physical-based and semidistributed hydrological SWAT model was employed to assess the hydrological simulation of the Ouergha watershed. The monthly simulation of the SWAT model achieved in the time frame from 1990 to 2013 has been split into warm-up (1990–1996), calibration (1997–2005), and validation (2006-2013). The SUFI-2 algorithm’s preliminary sensitivity and uncertainty analysis was done to calibrate the model using 11 hydrologic parameters. The model’s performance and robustness findings are promising. To evaluate the model, the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and percent of bias (PBIAS) were utilized. The value of R2, NSE, and PBIAS ranged from 0.45–0.77, 0.6–0.89, and +12.72 to +21.89% during calibration and 0.51–0.85, 0.64–0.88, and +8.82 to +22.19% during validation period, respectively. A high correlation between the observed and simulated streamflow was recorded during the calibration and validation periods. More than 68% of the observation data are encompassed by the 95PPU across both the calibration and validation intervals, which is excellent in terms of the P-factor and R-factor uncertainty criterion. The projected streamflow matches the observed data well graphically. According to the total hydrological water balance study, 29% of precipitation is delivered to streamflow as runoff, whereas 54% of precipitation is lost through evapotranspiration. The recharge to the deep aquifers is 8%, whereas the lateral flow is 10%. The findings of this study will help as a roadmap for the anticipated water management activities for the basin since the management and planning of water resources require temporal and spatial information.
EN
The Upper Ziz basin located in the southeast of Morocco, has a total area of 4,351 km2. The surface water feeds El Hassan Addakhil dam, which insures water supply for the downstream cities of Errachidia, Rissani, Erfoud and others along the Ziz valley. This study aimed to evaluate the availability of water resources in this basin known by its arid climate and strong climatic changes. Several global hydrological models at different times were used to simulate the discharge at the outlet. The Statistical Downscaling Model (SDSM) method has been used to reduce the average rainfall and the temperature to predict future climate change related to various Representative Concentration Pathway (RCP) scenarios such as RCP 4.5 and RCP 8.5. The results of the hydrologic models are available, with an NSE of 0.8 for the monthly model during calibration and 0.77 at validation. Future precipitation shows an increasing trend in both scenarios. As for future mean temperature, it will recognize great seasonal variability, such as warming winter and spring and cooling summer and autumn. As a result, simulated future discharge will decrease by 26% under RCP 4.5 and by 24% under RCP 8.5 in the near future.
EN
Rainfall-runoff modeling plays a crucial role in achieving efficient water resource management and flood forecasting, particularly in the context of increasing intensity and frequency of extreme meteorological events induced by climate change. Therefore, the aim of this research is to assess the accuracy of the Long-Short-Term Memory (LSTM) neural networks and the impact of its architecture in predicting runoff, with a particular focus on capturing extreme hydrological discharges in the Ouergha basin; a Moroccan Mediterranean basin with historical implications in many cases of flooding; using solely daily rainfall and runoff data for training. For this purpose, three LSTM models of different depths were constructed, namely LSTM 1 single-layer, LSTM 2 bi-layer, and LSTM 3 tri-layer, their window size and hyperparameters were first tuned, and on seven years of daily data they were trained, then validated and tested on two separate years to ensure the generalization on unseen data. The performance of the three models was compared using hydrogram-plots, Scatter-plots, Taylor diagrams, and several statistical metrics. The results indicate that the single-layer LSTM 1 outperforms the other models, it consistently achieves higher overall performance on the training, validation, and testing periods with a coefficient of determination R-squared of 0.92, 0.97, and 0.95 respectively; and with Nash-Sutcliffe efficiency metric of 0.91, 0.94 and 0.94 respectively, challenging the conventional beliefs about the direct link between complexity and effectiveness. Furthermore, all the models are capable of capturing the extreme discharges, although, with a moderate und erprediction trend for LSTM 1 and 2 as it does not exceed -25% during the test period. For LSTM 3, even if its underestimation is less pronounced, its increased error rate reduces the confidence in its performance. This study highlights the importance of aligning model complexity with data specifications and suggests the necessity of considering unaccounted factors like upstream dam releases to enhance the efficiency in capturing the peaks of extreme events.
EN
In Morocco, the mountainous areas are often exposed to bulky and vicious flows of water and sediment. This process is exacerbated by the decrease in vegetation cover and the disruption in rainfall-runoff conditions that frequently cause significant flooding. By exploring the main hydrologic elements of these processes, it is possible to understand the behavior and hydrological response of watersheds and thus plan accordingly. In this study, the authors focused on determining the morphometric characteristics of the upper Oum Er-Rbia River basin (UOERRB by assessing/ evaluating the land use and land cover changes for a period of 32 years (1984-2016). Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) was applied to simulate four daily hydrological events. The concentration time was 7.7 hours. The four storm events examined to calibrate and validate the simulated outflow at the outlet indicated a good agreement between the hydrographs of the measured and simulated flows, with an average Nash-Sutcliffe efficiency (NSE) value ranging from 0.63 to 0.76. Between 2002 and 2016, an average 6.21 percent increase in vegetation cover of with annual rainfall increasing from 690 to 714.1 mm/year was observed. These results can contribute to a better understanding of the hydrologic processes and better estimation of the return flows and thus guiding management decisions and developments in the UOERRB.
EN
Water management is one of the critical challenges facing humanity due to increasing demand and limited resources resulting from the rapid growth of population, urban planning, agricultural and industrial sectors. Hydrological modeling is one of the key solutions used by researchers for estimating and monitoring the spatial and temporal variability of water resources in a watershed. This paper aims to evaluate the Soil & Water Assessment Tool (SWAT) performances and simulates the water cycle components of El Grou watershed (3504 km2 ), one of the main basins in the landscape hydrology of Morocco. It points to the need for developmrent of better model input data sets in Africa which are unlimted available when they are crucial for a detailed study of water resources. The model was built under ArcSWAT, and all other processes such as sensitivity analysis, calibration (10 years) and validation (4 years) were done with SWAT-CUP software using the SUFI-2 algorithm. The coefficient of determination (R2), the Nash–Sutcliffe efficiency (NSE) and the square error (RSR) were used to evaluate model performances. The results show that calibration and validation are considered very good, with R2 and NSE >0.81 and RSR <0.5. The hydrological regime of the El Grou watershed points out a predominance of evapotranspiration (75%). Moreover, soil erosion estimation for the period (2000–2015) indicates a low to medium potential of soil erosion with an average of 11.3 t/ha/year.
EN
The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area – the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers’ behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver’s foraging.
PL
W artykule przedstawiono zagadnienia związane z modelowaniem historycznym przepływów, dzięki któremu możliwe jest odtworzenie zasięgu zalewów na rzekach Ślęży i Widawie, na skutek piętrzenia na tzw. wojskowych zaporach wodnych. Problematyka ta dotyczy fortyfikacji lekkiej Wrocławia na przełomie XIX/XX, która związana była z kształtującą się w tym czasie siecią rzeczną Wrocławia.
EN
The paper presents the problems related to historical modeling of dis-charges, through which it is possible to recreate the range of flooding on the Ślęza River and the Widawa River, as a result of damminig on fortress weirs. This issue relates to the Wrocław fortifications at the turn of the nineteenth and twentieth, which was associated with the river network forming at this time in Wrocław.
8
Content available GIS w hydrologii Lublina
PL
Celem opracowania jest prezentacja metody wyznaczenia zlewni miejskich na przykładzie Lublina, określenie podstawowych parametrów topograficznych i hydrologicznych warunkujących formowanie spływu powierzchniowego i odpływu podczas intensywnych opadów deszczu oraz stworzenie i przetestowanie prostego modelu hydrologicznego, pozwalającego na ustalenie objętości odpływu z poszczególnych zlewni przy założonej wysokości opadów atmosferycznych wywołanych letnimi opadami burzowymi. Obliczenie ilości wody opadowej odpływającej z terenu miasta umożliwia także szacowanie ładunków zanieczyszczeń i dróg ich spływu do systemu rzecznego. Do ustalenia objętości wody biorącej udział w odpływie wybrano metodę SCS CN (Soil Conservation Service Curve Number method), opracowaną przez amerykańską Służbę Ochrony Zasobów Naturalnych. Do opisu elementów środowiska warunkujących zjawiska hydrologiczne wykorzystano dane przestrzenne pochodzące z różnych źródeł, które zintegrowano w bazie danych. Do warstwy informacyjnej opisującej użytkowanie terenu dołączona została tablica wartości średnich stężeń zanieczyszczeń. Wyniki uzyskane drogą modelowania potwierdzono na podstawie obserwacji w zlewniach eksperymentalnych. Obliczenia przeprowadzono przy użyciu oprogramowania ArcGIS, wraz z rozszerzeniami Spatial Analyst i Hydrologic Modeling. Wykorzystano także oprogramowanie L-Thia GIS ułatwiające m.in. ustalenie parametrów CN, opadu efektywnego i objętości odpływu.
EN
The aim of this paper is to present the method of determining urban catchment on the example of Lublin, the determination of the basic topographical and hydrological parameters conditioning formation of surface runoff and drainage during heavy rains and to create and test a simple hydrological model, sufficient for determining the volume of outflow from each catchment with assumed amount of precipitation caused by summer rain storms. Calculation of the amount of rain water flowing out from the city allows also to estimate pollutant loads and their run-off routes into the river system. To determine the volume of water involved in the outflow SCS CN method (Soil Conservation Service Curve Number method) was selected. This method is developed by the U.S. Natural Resources Conservation Service. To describe the elements of the environment which determine hydrologic phenomena, spatial data from different sources were used. Spatial data were integrated in one database. To the information layer describing the land use, array of values of average concentrations of pollutants was included. The modeling results were confirmed by observations in experimental catchments. Calculations were performed using ArcGIS software, with Spatial Analyst and Hydrologic Modeling extensions. Also, L-Thia GIS software was used to determine the parameters of CN, effective precipitation and outflow volumes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.