Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  homogenizacja numeryczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents an assessment of the effect of fiber orientation on the strength properties of products made from wood-polymer composites by the injection molding process based on micromechanical analysis. For this purpose numerical analysis was carried out for the product model with geometry of the sample intended for the uniaxial tensile test. To determine the actual fiber orientation after the manufacturing process, the orientation tensor values were calculated using Autodesk Moldflow Insight 2016 software. The micromechanical calculations were performed using Digimat FE commercial code. The results (stress-strain characteristics) of the numerical simulations taking into account the calculated fiber orientation tensor were compared to the experiment. To produce the wood-polymer composite, the polypropylene polymer matrix was Moplen HP 648T. As the filler Lignocel C120 wood fibers made by Rettenmeier & Sohns company were applied. A composite with a 10 vol.% content of wood fibers in the polymer was manufactured in the extrusion process by means of a Zamak EHP 25 extruder. For specimen manufacturing a Dr. Boy 55E injection molding machine equipped with a two cavity injection mold was used. Before the numerical simulations the uniaxial tensile test was performed using a Zwick Roell Z030 testing machine. The specimens were tested at the speed of 50 mm/min according to the PN-EN ISO 527 standard. The obtained stress-strain characteristics were used as a verification criterion for further numerical analysis. Moreover, the mechanical properties of the same composite products were predicted for hypothetical fiber orientation types. It was noted that the selection of fiber orientation has a significant impact on the quality of the obtained results compared to the experiment.
PL
Przedstawiono ocenę wpływu orientacji włókien na właściwości wytrzymałościowe wyrobów kompozytowych na przykładzie wyrobów z kompozytu typu drewno-polimer formowanych w technologii wtryskiwania. Przeprowadzono analizę numeryczną dla modelu wyrobu o geometrii próbki przeznaczonej do próby jednoosiowego rozciągania. W celu uzyskania danych o powtryskowej orientacji włókien w matrycy polimerowej przeprowadzono analizę numeryczną procesu wtryskiwania za pomocą oprogramowania Autodesk Moldflow Insigth 2016. Uzyskano w ten sposób wartości tensora orientacji włókien dla zadanych parametrów technologicznych procesu wytwarzania wyrobu. Obliczenia mikromechaniczne (analizy właściwości struktury kompozytu) przeprowadzono z wykorzystaniem oprogramowania Digimat FE. Wyniki analizy numerycznej dla obliczonej wartości tensora orientacji włókien porównano z eksperymentem. Ponadto, w celu ułatwienia definiowania w systemach CAE właściwości kompozytu wykonano prognozowanie jego właściwości mechanicznych dla hipotetycznych, uproszczonych przypadków orientacji włókien. Potwierdzono, iż dobór orientacji napełniacza (włókien) ma znaczący wpływ na zgodność prognozowanych właściwości kompozytu z wynikami badań eksperymentalnych.
EN
In this paper, we analyze the embedding cell method, an algorithm which has been developed for the numerical homogenization of metal-ceramic composite materials. We show the convergence of the iteration scheme of this algorithm and the coincidence of the material properties predicted by the limit with the effective material properties provided by the analytical homogenization theory in two situations, namely for a one-dimensional linear elasticity model and a simple one-dimensional plasticity model.
EN
In this study prediction of the strength properties of composites made of polyester resin and continuous glass fiber reinforcement in established grades was performed. Structure modeling based on the numerical homogenization method was conducted using Digimat FE commercial code, taking into account the geometry and properties of all the composite components. In the first stage, analysis was performed for OCF M8610 mat. At the beginning the calculations were done for beam roving from S glass. Preliminary calculations were performed for the virtual composition of glass fibers-air, which allowed calculation of the yarn properties, directly used to build the glass mat model. The second stage of the calculation was carried out for glass mat saturated with polyester resin. For this purpose, roving bundle data and polymer matrix data were implemented. The volume fraction of the glass mat in the composite was also determined, and a random fiber orientation in the plane was defined. The properties of the fabric-resin composite were calculated for polyester resin and Cofab A1118B glass fiber plain weave fabric. The basic properties of the fiber in the analyzed bi-directional fabric were established on the basis of literature. The calculation of some fabric properties was conducted by a different algorithm than in the case of the mat. The last stage of property calculation for the warp and weft was to predict the weave properties based on the manufacturer's data. Only at this stage was the mean field method (MFM) used in the calculations. The geometrical dimensions of the reinforcements were calculated including its grammage, where the value is highly compatible with the grammage given in the literature. For both types of reinforcement visualization of the composite structure was performed. The calculated composite properties were used in strength simulations of a useful product for three variants of composite reinforcement: (a) polyester resin without reinforcement, (b) polyester resin with glass fiber mat, (c) polyester resin with glass fiber fabric, which allowed carrying out a comparative strength analysis.
PL
W pracy przeprowadzono prognozowanie wytrzymałości kompozytów wykonanych z żywicy poliestrowej i tkaniny lub maty z włókien szklanych w ustalonych gatunkach. Modelowanie struktury kompozytów wykonano z wykorzystaniem metody numerycznej homogenizacji z użyciem oprogramowania Digimat FE, biorąc pod uwagę geometrię i właściwości każdego składnika kompozytu. W pierwszym etapie przeprowadzono analizę dla maty w gatunku OCF M8610. Wykonano niezbędne obliczenia dla jednej wiązki rowingu typu S. Wstępne obliczenia dotyczyły wariantu kompozycji: włókna szklane - powietrze. Umożliwiły one obliczenie właściwości przędzy, bezpośrednio wykorzystywanej do budowy modelu maty szklanej. W drugim etapie przeprowadzono obliczenia dla kompozycji: mata - żywica poliestrowa. W tym celu uwzględniono dane wiązki i osnowy polimerowej. Określono także udział objętościowy maty szklanej w kompozycie oraz zdefiniowano, jako losową, orientację włókien w płaszczyźnie. Właściwości kompozycji typu tkanina - żywica obliczono dla tkaniny z włókna szklanego w gatunku Cofab A1118B i żywicy poliestrowej. Podstawowe właściwości włókna w analizowanej dwukierunkowej tkaninie zostały ustalone na podstawie literatury. Obliczenie niektórych właściwości tkaniny wykonano za pomocą innego algorytmu niż w przypadku maty. Ostatnim etapem obliczania właściwości osnowy i wątku było określenie splotu tkaniny zgodnie z danymi producenta. Obliczono geometryczne wymiary wzmocnienia kompozytu, w tym jego gramaturę, której wartość w dużym stopniu jest zgodna z gramaturą tkaniny określoną przez producenta. Wyłącznie na tym etapie zastosowano w kalkulacjach metodę homogenizacji uśrednionego pola (ang. MFM). Dla obydwóch typów wzmocnienia wykonano wizualizację struktury kompozytów. Obliczone właściwości kompozytu zostały wykorzystane do symulacji wytrzymałości wytworu użytkowego dla trzech wariantów wzmocnienia: a) żywicy poliestrowej bez zbrojenia, b) żywicy poliestrowej z matą z włókna szklanego, c) żywicy poliestrowej z tkaniną z włókna szklanego, co pozwoliło na przeprowadzenie wytrzymałościowej analizy porównawczej.
EN
In this work the calculations for predicting the properties of wood fiber mats – polyester resin composite using numerical homogenization method were performed. For this purpose, the microstructural strength properties were calculated using DIGIMAT FE commercial code. In addition, for com-parative purposes a calculation of polyester resin – glass fiber composites was conducted. This allowed to compare the properties of two types of com-positions. In addition, the obtained strength properties were used to simulate the work of product made of these composites. This study was performed using the Ansys commercial code. Usability of the polyester resin – wood fiber mat composite and knowledge of its properties will allow to find a correct application of this composite type and can provide an alternative way to other polymeric resin reinforced by mat.
5
Content available remote Comparison of two methods for numerical upscaling
EN
The main objective of this paper is to compare two discretization-based homogenization methods. A local numerical homogenization and a multiscale finite element method (MsFEM) are first briefly presented and next numerically tested. In the case of MsFEM, a new shape function construction is also presented. Extensive comparison of both techniques constitutes the main part of this study. Novelty of this research is to combine aforementioned methods with mesh adaptivity at the coarse mesh level and the application of the higher-order approximation.
PL
W pracy przedstawiono metodę modelowania wieloskalowego materiałów gradientowych na przykładzie kompozytu włóknistego o zmiennej średnicy włókna. Celem modelowania było wyznaczenie makroskopowych własności materiałowych określających zmiany w materiale gradientowym. Obliczenia wykonano w oparciu o analizę naprężeń z wykorzystaniem metody elementów skończonych (MES) oraz homogenizacji numerycznej.
EN
The paper presents a method for multiscale modelling of graded materials, on the example of fiber composite with varying fiber diameter. The aim of modelling was to determine the macroscopic material properties, which define changes in graded material. Calculations were based on stress analysis by means finite element method and numerical homogenization.
7
Content available remote Two-scale modelling of reactive powder concrete. Part II numerical simulations
EN
This article is the second part of a series about two-scale modelling of reactive powder concrete (RPC). In the first part [2] a method of modelling RPC microstructure was presented, the boundary value problem of mechanics for a representative cell at the micro scale was formulated and solved. In this part we will consider a method for determining material parameters at the macro level, and describe a technique of enforcement of boundary conditions upon an RVE as well as illustrate the theoretical considerations with results of numerical simulations. In the third part of the series we will present the validation of the proposed numerical model, based on the computational simulations of full size beams made of two RPC mixtures and own laboratory testing of the beams.
EN
This article is the third and final part of a series about two-scale modelling of reactive powder concrete in the linear range. In the first part [1] a method of modelling RPC microstructure was presented, the boundary value problem of mechanics for a representative cell at the micro scale was formulated and solved. In the second part [2] a method for determining material parameters at the macro level was shown, a technique for enforcing boundary conditions upon an RVE was described, and the results of numerical simulations were presented. In this part we will present the results of laboratory tests of full-size beams made from two RPC mixtures, the results of numerical simulations of these beams and the validation of the proposed numerical model.
EN
In this paper the application of local numerical homogenization and hp-adaptive FEM for modeling of non-periodic heterogeneous viscoelastic materials is presented. These two methods were combined and modified in order to provide a novel tool for reliable and efficient analyses of structures made of the above mentioned materials. Short descriptions of both numerical methods as well as our approach are provided. Several numerical examples are presented in order to validate the effectiveness of the proposed method.
PL
W pracy przedstawiono metodę modelowania wieloskalowego struktur wytworzonych z użyciem addytywnej metody Fused Deposition Modeling (FDM). Jako przykład wykorzystano model biorusztowania kości beleczkowej. Na podstawie wytworzonego modelu wzorcowego biorusztowania, zbudowano numeryczny model trójskalowy MES uwzględniający budowę struktury w skalach mikro, meso i makro. Obliczenia wieloskalowe zrealizowano z zastosowaniem metody homogenizacji numerycznej.
EN
The paper presents a method for multiscale modeling of structures manufactured using Fused Deposition Modeling (FDM) additive method, on the example of trabecular bone scaffold model. On the basis of manufactured bone scaffold reference model, the FEM numerical model of the structure was build, which takes into account the structure of scaffold at micro, meso and macro scales. Multiscale calculations were performed using numerical homogenization method.
11
Content available remote Trabecular bone numerical homogenization with the use of buffer zone
EN
The paper is devoted to calculation of effective orthotropic material parameters for trabecular bone tissue. The finite element method (FEM) numerical model of bone sample was created on the basis of microcomputed tomography (µCT) data. The buffer zone surrounding the tissue was created to apply the periodic boundary conditions. Numerical homogenization algorithm was implemented in FEM software and used to calculate the elasticity matrix coefficients of the considered bone sample.
EN
The paper deals with the two-scale approach to the identification of material constants in composite materials. Structures made of unidirectionally fibre-reinforced composites are examined. Composite constituents’ elastic constants in a micro scale are identified on the basis of measurements performed in a macro scale. Numerical homogenization methods using a representative volume element are employed. Static (displacements in sensor points) and dynamic (eigenfrequencies) data are considered as measurements. Ideal and disturbed measurements are taken into account. Computational intelligence methods in the form of evolutionary algorithms and artificial immune systems are used to perform the identification procedure. Finite element method is used to solve the boundary-value problem for composites in both scales. Numerical examples presenting the effectiveness of the proposed approach are attached. Statistical data are considered to compare the efficiency of the identification procedure for both algorithms and different measurement data.
EN
The paper presents numerical simulations of water infiltration in unsaturated porous media containing coarse-textured inclusions embedded in fine-textured background material. The calculations are performed using the two-phase model for water and air flow and a simplified model known as the Richards equation. It is shown that the Richards equation cannot correctly describe flow in the presence of heterogeneities. How-ever, its performance can be improved by introducing appropriately de-fined effective capillary and permeability functions, representing large-scale behaviour of the heterogeneous medium.
14
Content available remote Identification in multiscale thermoelastic problems
EN
The paper deals with the identification in multiscale analysis of structures under thermal and mechanical loads. A two-scale model of porous materials is examined. Direct thermoelastic analyses with representative volume element (RVE) and finite element method (FEM) are taken into account. Identification of material constants of the microstructure and identification of the shape of the voids in the microstructure are considered. Identification functional is formulated on the basis of information obtained from measurements in mechanical and thermal fields. Evolutionary algorithm is used for the identification as the optimization technique. Numerical examples of identification for porous aluminum models are enclosed.
EN
The article is the first part of a series concerned with the modelling of reactive powder concrete by using a numerical homogenization technique. This technique is a multi-scale modelling approach. Specifically, in this paper a two scale modelling concept was applied. A model of reactive powder concrete (RPC) is considered whose behaviour on the macro scale is described on the basis of the phenomena occurring in the microstructure of the material. This approach provides the ability to take into account some complex phenomena occurring in the microstructure and their influence on the macroscopic physical and mechanical properties of the material. The method does not require knowledge of the constitutive equation parameters at the macro level. These are determined implicitly for each load increment on the basis of numerical model of a representative volume element,(RVE), which reflects the geometrical layout of particular material phases, their constitutive relations and mutual interactions. In this paper the linearly elastic behaviour of each constituent material is assumed within the small strain range. In solving the boundary value problems formulated on the RVE for RPC, the finite element method was utilized. A number of numerical test examples were solved which illustrate the influence of inhomogeneities on the overall response.
PL
Artykuł jest pierwszą częścią pracy dotyczącej modelowaniu betonów z proszków reaktywnych przy zastosowaniu numerycznej homogenizacji. Technika ta jest podejściem wielkoskalowego modelowania. W tym konkretnym przypadku modelowania dwuskalowego. Zachowanie modelu betonu typu RPC w skali makro (skala punktu materialnego, poziom opisu fenomenologicznego) opisywane jest na podstawie zjawisk zachodzących w mikrostrukturze materiału (mikroskala). Takie podejście daje możliwość uwzględnienia szeregu zjawisk zachodzących w mikrostrukturze na właściwości fizyczne i mechaniczne materiału. Na przykład wpływ mikropęknięć na wytrzymałość betonu. Nie bez znaczenia jest fakt, że metoda nie wymaga znajomości równań konstytutywnych w skali makro, związki te są wyznaczane w sposób niejawny dla każdego przyrostu obciążenia na podstawie numerycznego modelu reprezentatywnego elementu objętościowego RVE. Do wyznaczenia niejawnych związków fizycznych w makroskali niezbędna jest znajomość geometrii mikrostruktury, równań konstytutywnych na poziomie skali mikro oraz ich parametrów. W tej pierwszej części pracy ograniczono się do sformułowania i rozwiązania zagadnienia brzegowego na poziomie mikroskali dla zadanych makronaprężeń na brzegu RVE. Opracowano własny program komputerowy, który generuje w sposób losowy mikrostrukturę RPC i rozwiązuje problem brzegowy zdyskretyzowany metodą elementów skończonych. Praca zawiera wyniki obliczeń zadań testowych.
16
Content available remote Local homogenization in modeling of heterogeneous materials
EN
This paper presents the concept of local homogenization method that can be applied to modeling of various heterogeneous materials. Our ultimate goal is to apply it to modeling of asphalt pavement structures and this paper focuses mainly on verification of accuracy and reliability of the method. After a brief characteristic of asphalt properties, the idea of computer homogenization is described. Especially ,the local homogenization is presented in details. Several computational examples (1D and 2D) solved by local homogenization are presented. They are compared with solutions obtained either in analytical way or using directly FEM approach with "full" consideration of heterogeneities in microscale. A few prospective applications of the presented method in context of asphalt pavement structures are depicted.
PL
Artykuł przedstawia koncepcję metody homogenizacji lokalnej, która może być wykorzystana do modelowania różnych materiałów niejednorodnych. Naszym celem jest zastosowanie jej do modelowania konstrukcji nawierzchni asfaltowych, ten artykuł dotyczy głównie sprawdzenia dokładności i wiarygodności metody. Po krótkiej charakterystyce warstw asfaltowych opisano ideę homogenizacji komputerowej. Przedstawiono szczegółowo zwłaszcza homogenizację lokalną. Zaprezentowano kilka przykładów obliczeniowych (1D i 2D) rozwiązanych z wykorzystaniem homogenizacji lokalnej. Wyniki porównano z rozwiązaniami otrzymanymi w sposób analityczny lub poprzez bezpośrednie wykorzystanie MES (z pełnym uwzględnieniem niejednorodności w mikroskali). Przedstawiono kilka perspektywicznych zastosowań prezentowanej metody w kontekście konstrukcji nawierzchni asfaltowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.