Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  high stress
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aiming at the deformation characteristics and the support problem of deep high stress broken-expand surrounding rock, the secondary support of the deep roadway engineering of Fenglong coal mine in Jiangxi Province, China, is carried out to optimize the parameters. First of all, according to the characteristics of deep roadway deformation in Fenglong coal mine, the specific support scheme was put forward on the basis of the original support, then, the secondary support parameters and the support time are designed. The softening strength parameters of the surrounding rock in the roadway are obtained by using the piecewise linear strain softening model and the dilatancy angle of the rock mass. Considering the strength effect of cable anchor, the calculation equation and support strength index ID concept of anchor cable are put forward, and the corrected calculation parameters of anchorage effect are given. Then, the numerical calculation is carried out for 16 schemes, meanwhile, the optimal scheme of the comprehensive evaluation index Es of roadway engineering stability is adopted. The influence of different anchoring effect on the stability of roadway and different secondary displacement value on the stability of roadway are analyzed respectively. Finally, the optimized support scheme is used to carry out the engineering practice, the results of monitoring the deformation of roadway by cross method show that the deformation value is within the controllable range, which can better control the roadway deformation.
EN
Although rock strength anisotropy is a well-known phenomenon in rock mechanics, its impact on geotechnical design is often ignored or underestimated. This paper explores the concept of anisotropy in a high stress environment using an improved unified constitutive model (IUCM), which can account for more complex failure mechanisms. The IUCM is used to better understand the typical responses of anisotropic rocks to underground mining. This study applies the IUCM to a proposed rock shaft located in high stress/anisotropic conditions. Results suggest that the effect of rock strength anisotropy must be taken into consideration when assessing the rock mass response to mining in high stress and anisotropic rock conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.