Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 154

Liczba wyników na stronie
first rewind previous Strona / 8 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  geochemistry
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 8 next fast forward last
1
PL
Naturalne wycieki węglowodorów na powierzchni terenu są najwyraźniejszym przejawem ropogazonośności basenów naftowych. Przyczyną ich występowania jest migracja faz węglowodorowych, a ich charakter zależy przede wszystkim od budowy tektonicznej. Makroprzejawy węglowodorów charakterystyczne są dla basenów naftowych cechujących się skomplikowaną tektoniką formacji ropogazonośnych i/lub zaawansowaną erozją skał uszczelniających. Analiza rozmieszczenia i intensywności naturalnych wycieków węglowodorów ma istotne znaczenie dla walidacji modeli systemów naftowych. Wycieki, które objęto badaniami pochodzą z rejonu złóż ropy naftowej: na fałdzie Łodyna-Wańkowa, Czarna, Dwernik, Zatwarnica oraz w rejonie Sanoka (Tarnawa Wielopole). Do określania charakteru geochemicznego wycieków zastosowano badania biomarkerów GC i GCMS oraz badania składu izotopowego węgla. Stwierdzono, że środowisko sedymentacji badanej materii organicznej, będącej źródłową dla wycieków, jest tlenowe. Wiek geologiczny substancji organicznej został określony na kredowy lub młodszy, a stopień dojrzałości termicznej odpowiada fazie procesów termokatalitycznych. Porównanie charakterystyki geochemicznej wycieków i rop naftowych wskazuje na ich podobieństwo genetyczne. Zbieżność między lokalizacjami wycieków i dużych złóż ropy naftowej nie jest przypadkowa, a prześledzenie wszystkich naturalnych wycieków na tle uaktualnionych przekrojów powierzchniowych będzie przesłanką do analizy dróg migracji w modelu generacyjnym.
EN
Visible petroleum seepages are pronounced symptoms of the subsurface petroleum reserves. Their occurrence is caused by the migration of hydrocarbons, and their nature depends primarily on the tectonics. Hydrocarbon macro seepages are characteristic of oil basins with complicated tectonics of oil-bearing formations and/or advanced erosion of sealing rocks. Analysis of the distribution and intensity of natural hydrocarbon seepages is essential for the validation of oil system models. The hydrocarbon seepages that were tested come from the area of oil fields: on the Łodyna-Wańkowa fold, Czarna, Dwernik, Zatwarnica and in the Sanok area (Tarnawa Wielopole). GC and GCMS biomarker analyses and isotopic composition tests were used to determine the geochemical character of the hydrocarbon seepages. It was found that sedimentation environment of the organic matter (which is the primary source of the oil seepage) was oxic. Geological age of the organic matter was determined as Cretaceous or younger. And the degree of thermal maturity corresponds to the phase of thermocatalytic processes. Comparison of the geochemical characteristics of the seepage oils and crude oils collected from fields shows their genetic similarity. The coincidence between the locations of oil seepages and large oil deposits is certainly not accidental. The tracing of all hydrocarbon seepages in the context of updated surface cross-sections will be a premise for the analysis of migration routes in the generation model.
EN
The paper was focused on the reconstruction of past-environmental conditions dynamics based on the geochemical characteristics of sediments filling kettle-hole located in the western part of the Kashubian Lakeland, North Poland). Stratigraphic variability of litho geochemical constituents and a set of 13 elements (TOC, N, P, Na, Ca, Mg, K, Al, Fe, Mn, Cu, Ni, Zn) were applied for Holocene reconstruction of certain processes and conditions in the studied kettle-hole. The detailed geochemical analysis allowed us to identify 6 phases in its development: Masz-1 stage covering sedimentation of sedge-moss peat over melting dead ice at the turn of the Preboreal and Boreal periods; Masz-2 stage of the initial phase of lake development with deep-water sedimentation; Late Boreal and Atlantic stage Masz-3 related to sedimentation of lacustrine chalk; Subboreal stage Masz-4 representing the beginning of lake terrestrialization; Subatlantic stage Masz-5 of lowland bog, and Masz-6 stage covering final phase of peatland evolution due to human activity. Principle component analysis highlighted the importance of two major factors controlling the geochemical variability of the studied sediments. These are the varied origin of supplying water reflected in the sedimentation of organic-calcareous sediments (PC1), and oxidative-reduction conditions determined by water level fluctuations (PC2).
EN
The key aspect for evaluation of potential effects of ongoing environmental changes is identification of their controlson one hand, and understanding of their mutual relations on other. In this context, the best source of information about medium and long term coThe key aspect for evaluation of potential effects of ongoing environmental changes is identification of their controlson one hand, and understanding of their mutual relations on other. In this context, the best source of information about medium and long term consequences of various environmental processes is the geologic record. Numerous different-scale palaeoenvironmental events took place during the Jurassic/Cretaceous transition; amongst them, the best documented so far are: long term marine regression during the Tithonian-early Berriasian, climate aridization during the late Tithonian-early Berriasian, and tectonic activity in western parts of the Neo Tethys Ocean during the late Berriasian-Valanginian. This study, which is based on the Ph Ddissertation of Damian Gerard Lodowski, attempts to reconstruct the latest Jurassic-earliest Cretaceous paleoenvironment and its evolution in the area of the Western Tethys, with special attention paid to cause-and-effect relationships between climate changes, tectonic activity and oceanographic conditions (perturbations in marine circulation and bioproductivity). Here are presented the basic results of high-resolution geochemical investigations performed in the Transdanubian Range (Hárskút and Lókút, Hungary), High-Tatric (Giewont, Poland) and Lower Sub-Tatric (Pośrednie III, Poland) series, Pieniny Klippen Belt (Brodno and Snežnica, Slovakia; Velykyi Kamianets, Ukraine) and Western Balkan (Barlya, Bulgaria) sections. The sections were correlated and compared in terms ofpaleoredox conditions (authigenic U), accumulation of micronutrient-type element (Zn) and climate changes (chemical index of alteration, CIA), providinga consistent scenario of the Tithonian-Berriasian palaeoenvironment evolution in various western Tethyan basins. Amongst the first-order trends and events, characteristic of studied sections are the two intervals recording an oxygen deficient at the seafloor: 1) the upper Tithonian-lowermost Berriasian (OD I); and 2) at the lower/upper Berriasian transition (OD II). Noteworthy, this phenomena cooccurred with elevated accumulations of nutrient-type elements (i. e. enrichment factor of Zn). Besides, collected data document the late Tithonian-early Berriasian trend of climate aridization, as well as the late Berriasian humidification. Such record is explained by a model, in which decreasing intensity of atmospheric circulation during the late Tithonian-early Berriasian was directly connected with climate cooling and aridization. This process resulted in lesser efficiency of up- and/or downwelling currents, which induced sea water stratification, seafloor hypoxia and perturbations in the nutrient-shuttle process during the OD I. On the other hand, the OD II interval may correspond to tectonic reactivation in the Neo Tethyan Collision Belt. This process might have led to physical cutoff of Alpine Tethys basins from the Neo Tethyan circulation (both atmospheric and oceanic), driving the limited stratification in the former, and limiting the effect of gradual humidification of global climate (i.e. due to increasing strength of monsoons and monsoonal upwellings). nsequences of various environmental processes is the geologic record. Numerous different-scale palaeoenvironmental events took place during the Jurassic/Cretaceous transition; amongst them, the best documented so far are: long term marine regression during the Tithonian-early Berriasian, climate aridization during the late Tithonian-early Berriasian, and tectonic activity in western parts of the Neo Tethys Ocean during the late Berriasian-Valanginian. This study, which is based on the Ph Ddissertation of Damian Gerard Lodowski, attempts to reconstruct the latest Jurassic-earliest Cretaceous paleoenvironment and its evolution in the area of the Western Tethys, with special attention paid to cause-and-effect relationships between climate changes, tectonic activity and oceanographic conditions (perturbations in marine circulation and bioproductivity). Here are presented the basic results of high-resolution geochemical investigations performed in the Transdanubian Range (Hárskút and Lókút, Hungary), High-Tatric (Giewont, Poland) and Lower Sub-Tatric (Pośrednie III, Poland) series, Pieniny Klippen Belt (Brodno and Snežnica, Slovakia; Velykyi Kamianets, Ukraine) and Western Balkan (Barlya, Bulgaria) sections. The sections were correlated and compared in terms ofpaleoredox conditions (authigenic U), accumulation of micronutrient-type element (Zn) and climate changes (chemical index of alteration, CIA), providinga consistent scenario of the Tithonian-Berriasian palaeoenvironment evolution in various western Tethyan basins. Amongst the first-order trends and events, characteristic of studied sections are the two intervals recording an oxygen deficient at the seafloor: 1) the upper Tithonian-lowermost Berriasian (OD I); and 2) at the lower/upper Berriasian transition (OD II). Noteworthy, this phenomena cooccurred with elevated accumulations of nutrient-type elements (i. e. enrichment factor of Zn). Besides, collected data document the late Tithonian-early Berriasian trend of climate aridization, as well as the late Berriasian humidification. Such record is explained by a model, in which decreasing intensity of atmospheric circulation during the late Tithonian-early Berriasian was directly connected with climate cooling and aridization. This process resulted in lesser efficiency of up- and/or downwelling currents, which induced sea water stratification, seafloor hypoxia and perturbations in the nutrient-shuttle process during the OD I. On the other hand, the OD II interval may correspond to tectonic reactivation in the Neo Tethyan Collision Belt. This process might have led to physical cutoff of Alpine Tethys basins from the Neo Tethyan circulation (both atmospheric and oceanic), driving the limited stratification in the former, and limiting the effect of gradual humidification of global climate (i.e. due to increasing strength of monsoons and monsoonal upwellings).
EN
The Song Hien Rift basin, located in northeast Vietnam, has been identified as an important region for gold deposits, including the Pac Lang deposit. Several methods like petrographic observations, elemental analyses, and geochemical elements and vertical zoning models of primary halo have been used to describe geological characteristic of this deposit. The investigation focused on examining the geological events that occurred both before and after the formation of the ore. The use of ICP-MS analysis and element concentration contrast enabled an effective assessment of the relative degrees of denudation that occurred at the Pac Lang deposit. The findings of this study were consistent with prior research on ore deposit geology, geochemical primary-halo, and examination of geochemical indicator zoning patterns for gold ore bodies. The study's application of singularity analysis for evaluating the degree of denudation provides important geological information that can aid in data interpretation. The results of the study can also have significant reference value in furthering our understanding of the post-ore deformation of deposits and in the investigation of unknown orebodies in northeast Vietnam. There indicate that, the research's findings suggest that the use of singularity analysis to evaluate the degree of denudation is a valuable tool for exploring potential gold deposits and enhancing our knowledge of gold deposit geology in northeast Vietnam. Overall, this study contributes to the existing body of knowledge on gold deposits in the Song Hien Rift basin and can serve as a useful reference for future research in the area.
EN
Almus agates which are forms of nodules like egg-shaped are located in the Eocene aged Almus volcanics in Tokat (Turkey). These nodules are surprise eggs in spherical or oval form ranging from a few cm to 25-30 cm. It is thought that the most effective reason for the formation of the magnificent texture and color combinations of the agates in the region is the iron element. In thin section studies, agate formations are composed of length-slow zebraic chalcedony and quart zine. In addition, curved fossil like structures composed of iron oxide minerals offer visual richness. The host rock in which the Almus agates are located is trachyte, which consists of sanidine, plagioclase microlites and small opaque minerals, in which microlithic porphyritic and flow (trachytic) texture are observed. As a result of the multipoint eds (field emission scanning electron microscope), it was determined that the quartz is composed of Si, O and Fe. The content of the iron element, which is thought to cause color, was observed in the range of ca 1–1.5 wt.%. According to XRF analysis results, in Almus agates, there is depletion of Fe2O3 content in fine crystalline regions (ca 1 wt.%) compared to coarse crystalline zones (ca 1.5 wt.%). In order to determine the usability of Almus agates as gemstone, various cabochon shapes were made in Ümit Ulus Gemstone Processing workshop. It has been observed that these agates can be used for both collection and gemstone purposes due to their unique patterns and color compensation.
PL
Agaty Almus, które mają formę guzków jajowatych i znajdują się w eoceńskich wulkanach Almus w Tokat (Turcja). Te guzki to jaja niespodzianki w kształcie kulistym lub owalnym, o wielkości od kilku do 25-30 cm. Uważa się, że najskuteczniejszym powodem powstawania wspaniałej faktury i kombinacji kolorów agatów w regionie jest pierwiastek żelaza. W badaniach cienkich przekrojów, formacje agatowe składają się z zebrowego chalcedonu i kwarcytu. Ponadto zakrzywione struktury przypominające skamieliny, złożone z minerałów tlenku żelaza, zapewniają wizualne bogactwo. Skała macierzysta, w której znajdują się agaty Almus, to trachit, na który składają się sanidyna, mikrolity plagioklazowe oraz drobne minerały nieprzezroczyste, w których obserwuje się mikrolityczną teksturę porfirytową i przepływową (trachytyczną). W wyniku wielopunktowego EDS (skaningowego mikroskopu elektronowego z emisją polową) ustalono, że kwarc składa się z Si, O i Fe. Zaobserwowano zawartość pierwiastka żelaza, o którym sądzi się, że powoduje barwę, w zakresie od około 1 do 1,5% wag. Zgodnie z wynikami analizy XRF, w agatach Almus następuje zmniejszenie zawartości Fe2O3 w obszarach drobnokrystalicznych (około 1% wag.) w porównaniu do obszarów gruboziarnistych (około 1,5% wag.). Aby określić przydatność agatów Almus jako kamieni szlachetnych, w pracowni Ümit Ulus Gemstone Processing wykonano różne kształty kaboszonów. Zaobserwowano, że te agaty mogą być używane zarówno do celów kolekcjonerskich, jak i kamieni szlachetnych ze względu na ich unikalne wzory i kompensację kolorów.
EN
Permian chert and siliceous mudstone in the Soi Dao, Chanthaburi Thailand are extracted the details on radiolarian assemblage and age, change of depositional environment, and geochemical characteristics. Permian radiolarians were obtained in three study areas (ASD01, ASD14 and ASD09); which radiolarian age of each section is as follows: ASD01: Early Asselian to Early Sakmarian, ASD14: Late Sakmarian to Artinskian, and ASD09: Capitanian to Early Changhsingian. Considering the lithofacies, ages, and chemical composition of the rocks, a preliminary stratigraphy consisting of basaltic rock, radiolarian bedded chert, siliceous mudstone, and coarse-grained clastic of alternation of sandstone and mudstone in ascending order can be reconstructed. Data on geochemistry analysis, particularly chondrite-normalized REEs patterns of chert and siliceous mudstone, present a gradual change in that degree of the Ce negative anomaly decrease toward the stratigraphical upper position. These changes indicate that the depositional site of the Permian rocks transferred from a state of high hydrothermal activity to a state of weakened activity and that the influx of terrestrial clastics increased. Permian bedded cherts accompanied by basalts and siliceous mudstones recognized in the study area closely resemble to the Paleo- ‑Tethys bedded cherts in terms of their lithofacies and microscopic features; however, their depositional period is much shorter than that of the Paleo-Tethys, indicating that it was deposited in another oceanic basin. The chemical compositions also show that the influence of hydrothermal activity weakened from the strong state, and the terrigenous clastics rapidly supplied.
EN
The surrounding of the Čoltovo village is a well-known location related to the Meliata Superunit (especially Meliata Unit s.s.). The Meliata Unit is represented by intricate mélange complexes linked to the closure of the ancient Meliata Ocean, as a significant part of the Western Carpathians geological story. In general, Meliata complexes are divided into HP/LT Permian to Jurassic metamorphosed clastic sediments, carbonates and basic volcanics (Bôrka Nappe) and complexes of “mixed chaos” of the Jurassic low grade shales with huge Triassic olistostrome bodies (Meliata Unit s.s.), the latter being the main subject of this work. Outcrops near the village of Čoltovo along the slopes of the W–E trend on the Slaná River bank provided limited information only. Therefore, new parts were excavated in March/2022. After removal of debris, the very complex internal structure of the mélange can be clearly detectable. This new section is composed of six individual outcrops (ČLP1 to ČLP6 from left to right) and consists of two contrasting lithological parts. The eastern part is mainly characterized by strongly weathered gray fine-grained shales and tuffs containing blocks of lithologically variable rocks. These are mainly represented by basic volcanics and dark coarse-grained Jurassic crinoidal limestones. The western part of the section consists of red and white fine-grained siliciclastics with basic volcanic material, and blocks of dark red, green and purple radiolarites. In the upper parts of the outcrops, layers of dark crinoidal limestones, shales and conglomerates of the Jurassic age are present. The connection between these beds and the mélange is documented by their presence as blocks in the left part of the section. The mélange complexes are overstepped by the Lower Miocene organodetritic limestones, sandstones and breccias (Bretka Beds). Three samples from the western part of the new outcrops gave identifiable Middle Triassic radiolarians. In addition, an old outcrop to the east of the newly excavated section, provided a productive sample with Upper Triassic radiolarian microfauna. Our research was also focused on geochemical analyses of radiolaria-bearing siliciclastics and basic volcanics, aiming at understanding the palaeoenvironment of the Meliata Ocean. All of the sediment samples gave similar results, which point to shallow marine environment, close to the continental margin. The geochemical data indicate a mature continental sedimentary provenance. Based on these data, we interpret the source of the samples located to the north of the Meliata Ocean (possibly Permian clastics of the Gemer Unit). Basic volcanics sample from the right side of the section confirms basalt/basaltic andesite composition. From the study of the Čoltovo section it seems the sedimentary matrix of the olistostrome probably originated from a passive continental margin and it is mixed with advanced ophiolite-bearing nappes within a Jurassic accretionary mélange (Meliata Unit s.s.).
EN
Bauxite deposits are residuals of intense lateritic weathering under warm and humid palaeoclimates. The Triassic– Jurassic Boundary (TJB) interval in the Salt Range, Pakistan, provides one such case of bauxite deposits formation along the SW tropical Neo-Tethyan passive margin. Thick, red bauxites/bauxitic clays occur at the contact of the Upper Triassic Kingriali Formation and the Lower Jurassic Datta Formation. These bauxites are rich in kaolinite, haematite, boehmite (Al2O3 and Fe2O3), and are depleted in silica (SiO2). Geochemical proxies of the succession signal intense chemical weathering of the parent siliciclastics under Mesozoic “greenhouse” conditions. Certain trace elements and Rare Earth Elements (REEs) are enriched up to seven times compared to mean Upper Continental Crust (UCC) values. These bauxites are synchronous with the Amir-Abad bauxites of the Alborz Mountains, central Iranian Plateau, that occur between the thick Triassic dolomite/dolomitic limestones of the Elika Formation and the Lower Jurassic Shemshak Formation. Thus, the Salt Range, Pakistan, provides evidence for the eastward extension of the Irano-Himalayan bauxites that are extended westward into Mediterranean bauxites, and the western Tethys by correlation with European bauxites. The TJB bauxites in the Salt Range support increased chemical weathering on the SW Neo-Tethyan passive margin and correspond to an associated sea-level fall during this time interval. This supports the Neo-Tethyan tectonics contribution in the formation of bauxite deposits during the Triassic–Jurassic in addition to the widely studied karst-bauxites that formed in response to the subduction and orogenic processes in the Paleo-Tethys.
EN
The Late Paleozoic–Early Mesozoic accretionary complexes of the Khangai-Daur belt, in central Mongolia, lie between the Siberian craton and the North China block. These complexes consist of Silurian mafic rocks (basalt, dolerite, and gabbro), Silurian–Devonian radiolarian cherts, and Carboniferous clastic rocks. While the mafic rocks are considered oceanic island alkaline, few studies have been conducted, and their classification is still under discussion. Understanding the petrogenesis and tectonic setting of these mafic rocks within the accretionary complexes is crucial for comprehending the tectonic evolution of ancient oceanic plates. This study involves geochemical analyses of 39 mafic rock samples and whole rock Sr-Nd isotopes from 24 mafic rock samples collected from four localities within the Khangai-Daur belt: Uubulan, Ikh-Oortsog, Takhilt area in the Ulaanbaatar terrane, and the Burd area in the Kharhorin terrane. Geochemically, all mafic rocks from the Uubulan, Ikh-Oortsog, and Takhilt area exhibit the signature of ocean island basalt (OIB). They are characterized by alkaline affinity with enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), as well as depletion in high field strength elements (HFSE) and heavy rare earth elements (HREE), resulting in a high concentration of ((La/Yb)cn = 4.5–15.6). In contrast, the mafic rocks from the Burd area exhibit tholeiitic-like affinity with less enrichment in LILE and LREE, and depletion in HFSE and HREE, resulting in a concentration of ((La/Yb)cn = 1.4–3.0). Therefore, the Ti/Y vs. Nb/Y and Ti vs. Zr ratio diagrams suggest that the samples were formed in a within-plate setting. Our latest study reveals that the hornblende K-Ar age (412.7 Ma ±8.6 Ma) of the mafic rocks and the reconstruction of the oceanic plate stratigraphy of the accretionary complex at Uubulan indicate a Late Silurian age. The Sr-Nd isotopic compositions ((87Sr/86Sr)i = 0.7040–0.7078, εNd(t) = 5.0–9.3) suggest that the magmas were derived from a deep OIB reservoir, indicating slightly heterogeneous magma sources. Overall, the results of this study suggest that alkaline and tholeiitic magmatism may have occurred during the Late Paleozoic within the oceanic plate between the Siberian craton and the North China blocks.
EN
Groundwater quality determination and age estimation in a desert landscape of El Golea province situated in the south of Algeria has been investigated in the present research paper. For this regard, 57 water samples were collected from an aquifer composed of two superimposed systems; phreatic and deep continental intercalary (CI) aquifers which are a part of the Northern Sahara Aquifer System (NWSAS). Samples were analyzed to assess the age and water quality using descriptive, multivariate statistics (PCA and HCA) and stable isotopes. It is revealed that more than 71% of the IC points are characterized by a water type (Ca2+, Mg2+) (HCO3 – )2 and more than 83% of the TC samples are defined by a water type (Ca2+, Na+) (HCO3 – , SO4 2 – ) and very high salt ions contents due to the influence of surface water, evaporate leaching and irrigation water return. The isotopic composition of samples of phreatic and CI aquifers shows a clear difference between the two qualities of water. The phreatic aquifer is characterized by the δ18O range from –4.68 to –6.1, whereas δ2H from –47.25 to –59.48 and CI with values of the δ18O range from –5.96 to –7.6, and δ2H range between –53.7 and –65.78 isotopic signature. The unconfined aquifer above IC forms a special case of a mixture of ancient water from deep horizons and recent water strongly enriched from shallow horizon lands.
EN
The Middle Eocene Akhoreh Formation is superbly exposed in the western corner of the Central-East Iranian Microcontinent (CEIM). This formation covered the northeastern flank of the Cretaceous Nain Ophiolite Mélange (NOM) and is adjacent to the Paleogene Urmieh–Dokhtar Magmatic Arc (UDMA) formed in the southwest of the CEIM. This terrigenous succession is composed of a thin basal conglomerate followed by mostly pink to purple sandstones alternating with shales. The clast composition and clast imbrication of the conglomerates show local source areas towards the north-north-east. Modal components of lower Akhoreh Formation sandstones reveals immature lithic arkose (Q8F48L44) and feldspathic litharenite (Q8F44L48) sandstones that are rich in mafic and ultramafic igneous and volcanic rock fragments. Mafic to ultramafic source rocks are also indicated by geochemical data (enrichment of Mg, Cr and Ni and Cr/V) in the sandstone and shale samples analyzed. However, geochemical data suggests an intermediate igneous rock origin for the shale samples studied, most likely from the nearby continental arc. Based on petrographic data, these sandstones have characteristics of a transitional to undissected arc tectonic setting. Geochemical discrimination diagrams using major and trace elements indicate an oceanic island arc tectonic setting for the lower Akhoreh Formation sandstones and shales, probably due to a predominance of ophiolitic source rocks. Furthermore, the chemical index of alteration and modal analysis indicate a weak to moderate degree of chemical weathering with arid climatic conditions in the source area. The exhumed NOM, together with the UDMA in the southwest, were dominant sources of sediment to the lower Akhoreh Formation, that lay to the northeast in a local retroarc basin of the Central Iranian Microplate, during the Middle Eocene.
EN
This study examined the effect of water column hypoxia on the distribution and geochemical fractionation of trace metals in the seasonally hypoxic coastal environment in the southeastern Arabian Sea. Water and surface sediments were collected fortnightly from the Alappuzha mud bank between April and August 2016, which covered the pre-upwelling and upwelling seasons. The water column was warm and well-oxygenated during April–May. During June–August, the incidence of cold and hypoxic water indicated strong coastal upwelling prevailed in the entire study domain. The Fe and Mn content in sediments gradually decreased, because of the reductive dissolution and subsequent release of metals under hypoxia. The concentration of metals such as Ni, Zn and V decreased substantially under oxygen deficiency, whereas Cr showed marked enrichment in sediments. Although the geochemical forms of trace metals displayed the dominance of residual fractions (inert), the reactive non-residual metal forms (exchangeable, Fe/Mn-(oxy)hydroxide, and organic matter/sulphide bound) showed considerable variability under hypoxia. The shift from Fe/Mn-(oxy)hydroxide bound to organic matter and sulphide bound was evident during hypoxia. Cr exhibited a strong affinity towards organic matter and sulphide, and Pb and Zn showed relatively high association towards the Fe/Mn-(oxy)hydroxide phase. Even with such a phase shift induced by the hypoxic conditions, the concentrations of these metals remained within the normal background levels, indicating the pristine nature of the mud bank environment.
EN
The country of the Republic of Kosovo is situated in the central part of the Balkan Peninsula. In the Southwest, it is bordered by Albania, in the West by Montenegro, in the North and East by Serbia and in the Southeast by North Macedonia. In this scientific paper was done the identification detailed for rocks found on the researched region. it was done the identification detailed for rocks found in the researched region. The region research it’s done scale by 1:25 000 for comparison map of geology scale by 1:200 000 and paper will be treated the mineralogical content, petrography microscope preparation, and geochemistry. For the region of Gjilan, the analysis was performed: for large elements, for small elements and traces, and for rare soils. The processing of the analysis of large elements, traces, and sub-traces was performed in the geochemical-petrological software MINPET. Constructed diagrams show that we are dealing with rocks generated in differentiated geodynamic environments. Most of the rocks analyzed fall in the field of basic and acid rocks, and only a small part of them belong to the medium and ultrabasic rocks. Acid rocks are represented mainly by their Metamorphism types – gneiss and less of those ages with them younger – granite. They generally show geochemical features of volcanic type than orogenic in acid magmatism The purpose of the paper it the proposal of the paper is the identification rocks in the exploration zone for the preparation petrographic of microscope and processing of the analysis of large elements, traces, and sub-traces was performed in the geochemical-petrological software MINPET. It was done by the evidencing and detailed description of all the types of rocks found in the researched region. The samples were taken from those rocks for the preparation of petrography microscope preparation. The analyses were completed at the certified laboratory of Geology-Mining Faculty (Polytechnic University of Tirana) – Geosciences Institute.
EN
Geochemical and plant macrofossil analyses of the Żabieniec mire deposits and the palaeoenvironmental changes they record of the past several thousand years constitute an important source for palaeogeographical reconstruction of the Polish Lowland. We describe the phases of the basin’s development from the final part of the Plenivistulian (MIS2), through the Late Glacial and the entire Holocene, encompassing changes determined by both regional and global factors in the surrounding environment, and habitat transformations in the limnogenic mire. The kettle-hole infill of the Żabieniec mire is the only documented example in Central Poland of a succession of biogenic deposits exceeding 10 m in thickness in such a setting. Deposition initially took place in a lake environment, which led to a shallowing of the lake that persisted until the end of the Mesoholocene.
EN
North of the Central Anatolian Crystalline Complex and bordered by the İzmir-Ankara-Erzincan Suture Zone, mineralization occurs within ophiolites known as Anatolian Ophiolite Complex. The mineralization is present within banded, laminated and lenticular radiolarites which are intensely fractured and folded. It is distributed around Derbent, Baltasarilar, Cihanpasa, Buyukmahal, Eymir and Kadisehri where pyrolusite, psilomelane, manganite and braunite comprise the main paragenesis and jacobsite, magnetite, limonite and goethite are minor phases. The negative Eu anomaly suggests that the hydrothermal source was distant from the mineralization area or was mixed with seawater. All samples from the Cihanpasa and Buyukmahal areas have a negative Ce anomaly and resemble low-temperature hydrothermal mineral deposits. Samples from other locations (Derbent, Baltasarilar, Cihanpasa, Eymir, Buyukmahal, Tarhana) are characterized by both negative and positive Ce anomalies. From this it can be inferred that both hydrothermal and hydrogenetic processes were active in mineralization. High Ba contents and a LREE-enriched pattern together with negative Ce anomalies and trace element distributions indicate that the mineralization in the area was derived from a primary hydrothermal source. In addition, diagenetic and epigenetic processes may also have played an important role in the manganese mineralization.
EN
Geologists of the Polish Geological Institute carried out their professional activities abroad as part of geological expeditions, in teams of several people and on individual contracts, including as experts of the United Nations. In terms of the scope of work, most of their activities were focued on research on mineral resources, mapping, geochemistry, hydrogeology and geophysics, as well as on teaching of geology at the university level. The beginnings date back to the turn of the 1950s. It began with a geological expedition to Vietnam. Mongolia was the goal of subsequent expeditions on a much wider scale. The researches were conducted from the beginning of the 1960s until the end of the 1980s. The contracts, performed in groups of several people and individually, covered about 20 countries; most of them on the African continent. They focused primarily on the search for metal ore deposits, hard coal, and chemical and rock raw materials. PGI geologists also worked as UN experts in Benin, Burundi, Chad, Gabon, Haiti, India, Madagascar, Mauritania and Niger. The results of their work on various continents were the discoveries of numerous mineral deposits and the recognition of geological structure over an area of thousands of square kilometres.
EN
The Jawornik granitoids intrude, in vein-like form, a sequence of a polymetamorphic metavolcanic and metapelitic rocks of the Orlica-Śnieżnik Dome, Sudetes, Poland. This paper provides whole-rock geochemical data, sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon geochronological data as well as 40Ar-39Ar age determinations to constrain the genetic and temporal relationships of the different rock types forming these veins. Based on macroscopically visible features of the granitoids and their relationship with tectonic structures visible in the country rocks, four varieties of the Jawornik granitoids have been distinguished: amphibole- and biotite-bearing granites (HBG), biotite-bearing granites (BG), biotite- and muscovite-bearing granites (BMG) and muscovite-bearing granites (MG). The Jawornik granitoids as a whole show a limited but significant variation in major element chemical composition, with SiO2 ranging from 65 to 76 wt.% (average 69.16 wt.%, n = 24). They are subalkalic, peraluminous and calc-alkaline [average A/CNK = 1.07, average (Na2O + K2O) = 7.75, average (Fe2O3t/(Fe2O3t + MgO) = 0.59]. Close inspection of their geochemical parameters showed that the samples investigated can be subdivided into two groups. The first group, the HBG, BG, and BMG varieties, comprising most of the granitoids in the Złoty Stok-Skrzynka Tectonic Zone, were formed by melting of greywackes or/and amphibolites. The MG, belonging to the second group, were formed by partial melting of a more felsic source. The HBG yielded a zircon U-Pb age of 351 ±1.3 Ma and well-defined 40 Ar-39Ar plateau ages for hornblende (351.1 ±3.9 Ma) and coexisting biotite (349.6 ±3.8 Ma), indicating probably the oldest magmatic event in this region. Zircons from the MG, the youngest rock variety on the basis of their relationship with the tectonic structures in the host rocks yielded a U-Pb age of 336.3 ±2.4 Ma, though based on three points only. The biotites and muscovites from the BMG have 40 Ar-39Ar plateau ages of 344.1 ±4.7 Ma and 344.6 ±3.8 Ma, respectively. These data, in combination with already published isotopic ages, suggest that the Jawornik granitoids intruded host rocks of the Orlica-Śnieżnik Dome in three stages, at ~350, ~344 and ~335 Ma.
EN
The research was conducted at the Kwiatków site, in the Koło Basin (Central Poland). It included a fragment of a low terrace and the valley floor of the Warta river valley. The archaeological investigation documented over 100 wells that archaeological material indicates are associated with the Przeworsk culture. Geomorphological, lithological and geochemical studies were carried out at the archaeological sites and their surroundings. Selected for the presentation were two wells whose fillings were carefully tested and subjected to geochemical and lithological analyses. The wells showed a slightly different content of artifacts, as well as differences in their grain-size distributions, the structure of their filling deposits, and their geochemistry. This allows us to conclude that the two wells were used differently, but also probably about a different course for how each well was filled after the end of its operation.
EN
Middle Miocene Badenian salt, occurring in the frontal zone of the Carpathian Overthrust (southern Poland), and the Upper Permian (Zechstein) bedded and diapir salt deposits, have been the subject of the research by PGI scientists. Many salt deposits were discovered by the PGI, but in particular, the greatest achievement related to the origin of salt deposits is the reconstruction of sedimentary environments and conditions based on detailed sedimentological and geochemical analyses.
EN
Borehole K-1 is an exploratory well that was drilled in the North Makassar Basin (West Sulawesi) in 2011. Gas chromatography (GC) and gas chromatography-mass chromatography (GC-MS) analyses have been conducted on extracts from well cuttings from the Paleogene to Neogene interval in order to investigate the characteristics of biomarkers present. Although the well was drilled with oil-based mud and gas chromatographic analysis reveals that the alkane fractions are heavily contaminated, detailed investigation of biomarkers in these rock extracts and comparison with biomarkers in the oil-based mud has revealed that, while there are hopane and sterane biomarkers in the mud, there are also a discrete set of biomarkers that are indigenous to the rocks. These include oleanane, bicadinanes, taraxastane and other higher-plant-derived triterpanes. The presence of these compounds in environments that range from bathyal to marginal marine and even to lacustrine, shows the extent of reworking of terrestrial material into aquatic settings in this region during the Paleogene and Neogene and provides further evidence of a predominance of terrestrial material, even in deep-marine settings, with little ‘in-situ’ material noted. These findings have important implications for the use of biomarkers as indicators of palaeoenvironment in both source rocks and oils.
first rewind previous Strona / 8 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.